The age forming technology, characterized by huge spring-backs, has been developed to manufacture large integral wing-skin panel parts, which necessitates devising a method of predicting spring-backs. A 7B04-T7451 alu...The age forming technology, characterized by huge spring-backs, has been developed to manufacture large integral wing-skin panel parts, which necessitates devising a method of predicting spring-backs. A 7B04-T7451 aluminum alloy creep test in tension is accomplished at 155 ℃, and the creep curves are obtained. The material constants of the mechanism-based creep constitutive equations are determined through experiments. The age forming process and the spring-backs of 7B04 aluminum alloy plates are analyzed using the commercial finite element software ABAQUS. The effects of plate thickness and forming time on spring-backs are researched. The spring-backs decrease with the increase of plate thickness and forming time. The test results verify the reliability of the finite element method (FEM) analysis.展开更多
The spring-back of a bending metal tube was studied through extensive experiments and finite element method (FEM) analysis. An approximate equation for the spring-back angle of bending was deduced. It is noted that ...The spring-back of a bending metal tube was studied through extensive experiments and finite element method (FEM) analysis. An approximate equation for the spring-back angle of bending was deduced. It is noted that the mechanical properties of the material (in a tubular form) are quite different from those found in the standard tensile tests (when the materials are in bar forms). This is one of the major reasons that result in the discrepancies in the outcomes of experimental study, FEM calculations, and spring-back analysis. It is therefore of crucial importance to study the mechanical properties of the materials in their tubular forms. The experiments and FEM simulations prove that the spring-back angle is significantly affected by the mechanical properties of the materials. The angle decreases accordingly with plastic modulus, but changes inversely with the hardening index and elastic modulus The spring-back angle is also affected by the conditions of tube deformation: it increases accordingly with the relative bending radius but changes inversely with the relative wall thickness. In addition, the spring-back angle increases nonlinearly with the bending angle.展开更多
To investigate the spring-back behavior of dual-phase (DP) steel, V-shape spring-back experiments with different bending angles, relative bending radii and blank holding forces were carried out in this paper. It is ...To investigate the spring-back behavior of dual-phase (DP) steel, V-shape spring-back experiments with different bending angles, relative bending radii and blank holding forces were carried out in this paper. It is concluded that with the increase of V-shape angle or blank holding force, the spring-back of DP steel sheets decreases; while raising fiIlet radius of punch, which has the most apparent effects on spring-back, advances spring-back angle. Among DP590, DP780 and DP980, higher strength yields more notable spring-back due to larger elastic deformation. The difference of spring-back among these materials is relevant with the microstructure and mechanical properties. The total elastic deformation approximately equals the ratio of the strength corresponding to the applied load to the modulus of elasticity.展开更多
In recent years, the use of advanced high strength steels in automotive industry has been increased remarkably. Among advanced high strength steels, dual phase (DP) steels have gained a great attention owing to a co...In recent years, the use of advanced high strength steels in automotive industry has been increased remarkably. Among advanced high strength steels, dual phase (DP) steels have gained a great attention owing to a combination of high strength and good formability. However, high strength usually increases the spring-back behavior of the material, which creates problems for the parts during the assembly. Thus, the uniaxial tensile deformation and spring-back behaviors of DP600 advanced high strength steel were investigated in rolling (0°), diagonal (45°) , and transverse (90°) directions in the temperature range from room temperature (RT) to 300 ℃. All tests were performed at a deformation speed of 25 mm/min. A V-shaped die (60°) was used for the spring-back measurements. The results indicated that the formability and spring-back of the material were decreased with increasing the temperatures. The material showed complex behaviors in different directions and at different temperatures.展开更多
We develop an efficiently improved knowledge-based neural network(KBNN)associated with optimization algorithms and finite element analysis(FEA)to accurately predict spring-back angles in metal sheet bending.The well-k...We develop an efficiently improved knowledge-based neural network(KBNN)associated with optimization algorithms and finite element analysis(FEA)to accurately predict spring-back angles in metal sheet bending.The well-known V and U prevalent processes of bending are considered.The KBNN predictive results are based on the empirical model and artificial neural network(ANN)modeling.The empirical model is constructed from the FEA results using response surface method,while the multilayer perceptron is employed to create the ANN.The trained KBNN can accurately model the relation-ship between the spring-back angles and process parameters.The obtained results are validated against other existing methods showing a high accuracy.展开更多
基金National Natural Science Foundation of China (50675010)
文摘The age forming technology, characterized by huge spring-backs, has been developed to manufacture large integral wing-skin panel parts, which necessitates devising a method of predicting spring-backs. A 7B04-T7451 aluminum alloy creep test in tension is accomplished at 155 ℃, and the creep curves are obtained. The material constants of the mechanism-based creep constitutive equations are determined through experiments. The age forming process and the spring-backs of 7B04 aluminum alloy plates are analyzed using the commercial finite element software ABAQUS. The effects of plate thickness and forming time on spring-backs are researched. The spring-backs decrease with the increase of plate thickness and forming time. The test results verify the reliability of the finite element method (FEM) analysis.
文摘The spring-back of a bending metal tube was studied through extensive experiments and finite element method (FEM) analysis. An approximate equation for the spring-back angle of bending was deduced. It is noted that the mechanical properties of the material (in a tubular form) are quite different from those found in the standard tensile tests (when the materials are in bar forms). This is one of the major reasons that result in the discrepancies in the outcomes of experimental study, FEM calculations, and spring-back analysis. It is therefore of crucial importance to study the mechanical properties of the materials in their tubular forms. The experiments and FEM simulations prove that the spring-back angle is significantly affected by the mechanical properties of the materials. The angle decreases accordingly with plastic modulus, but changes inversely with the hardening index and elastic modulus The spring-back angle is also affected by the conditions of tube deformation: it increases accordingly with the relative bending radius but changes inversely with the relative wall thickness. In addition, the spring-back angle increases nonlinearly with the bending angle.
文摘To investigate the spring-back behavior of dual-phase (DP) steel, V-shape spring-back experiments with different bending angles, relative bending radii and blank holding forces were carried out in this paper. It is concluded that with the increase of V-shape angle or blank holding force, the spring-back of DP steel sheets decreases; while raising fiIlet radius of punch, which has the most apparent effects on spring-back, advances spring-back angle. Among DP590, DP780 and DP980, higher strength yields more notable spring-back due to larger elastic deformation. The difference of spring-back among these materials is relevant with the microstructure and mechanical properties. The total elastic deformation approximately equals the ratio of the strength corresponding to the applied load to the modulus of elasticity.
基金Item Sponsored by Scientific and Technological Research Council of Turkey(107 M596)
文摘In recent years, the use of advanced high strength steels in automotive industry has been increased remarkably. Among advanced high strength steels, dual phase (DP) steels have gained a great attention owing to a combination of high strength and good formability. However, high strength usually increases the spring-back behavior of the material, which creates problems for the parts during the assembly. Thus, the uniaxial tensile deformation and spring-back behaviors of DP600 advanced high strength steel were investigated in rolling (0°), diagonal (45°) , and transverse (90°) directions in the temperature range from room temperature (RT) to 300 ℃. All tests were performed at a deformation speed of 25 mm/min. A V-shaped die (60°) was used for the spring-back measurements. The results indicated that the formability and spring-back of the material were decreased with increasing the temperatures. The material showed complex behaviors in different directions and at different temperatures.
文摘We develop an efficiently improved knowledge-based neural network(KBNN)associated with optimization algorithms and finite element analysis(FEA)to accurately predict spring-back angles in metal sheet bending.The well-known V and U prevalent processes of bending are considered.The KBNN predictive results are based on the empirical model and artificial neural network(ANN)modeling.The empirical model is constructed from the FEA results using response surface method,while the multilayer perceptron is employed to create the ANN.The trained KBNN can accurately model the relation-ship between the spring-back angles and process parameters.The obtained results are validated against other existing methods showing a high accuracy.