In this study,single-particle energy was examined using the finite difference method by taking 208Pb as an example.If the first derivative term in the spherical Dirac equation is discretized using a three-point formul...In this study,single-particle energy was examined using the finite difference method by taking 208Pb as an example.If the first derivative term in the spherical Dirac equation is discretized using a three-point formula,a one-to-one correspondence occurs between the physical and spurious states.Although these energies are exactly the same,the wave functions of the spurious states exhibit a much faster staggering than those of the physical states.Such spurious states can be eliminated when applying the finite difference method by introducing an extra Wilson term into the Hamiltonian.Furthermore,it was also found that the number of spurious states can be reduced if we improve the accuracy of the numerical differential formula.The Dirac equation is then solved in a momentum space in which there is no differential operator,and we found that the spurious states can be completely avoided in the momentum space,even without an extra Wilson term.展开更多
This paper is addressed to the problem of Galilei invariant basis construction for identical fermions systems. The recently introduced method for spurious state elimination from expansions in harmonic oscillator basis...This paper is addressed to the problem of Galilei invariant basis construction for identical fermions systems. The recently introduced method for spurious state elimination from expansions in harmonic oscillator basis [1] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400310034003400340037003600360038000000 is adopted and applied to bound states of two particles system with Coulomb potential description. Traditional expansions in this case demonstrate the extremely well-known slow convergence, and hence this is the best problem with known exact solutions for the test of the method. Obtained results demonstrate the significant simplification of the problem and fast convergence of expansions. We show that the application of this general method is very efficient in a test case of the energy spectrum calculation problem of two particles with different masses interacting with Coulomb potential.展开更多
基金partly supported by the National Natural Science Foundation of China(No.11875070)the Natural Science Foundation of Anhui Province(No.1908085MA16)
文摘In this study,single-particle energy was examined using the finite difference method by taking 208Pb as an example.If the first derivative term in the spherical Dirac equation is discretized using a three-point formula,a one-to-one correspondence occurs between the physical and spurious states.Although these energies are exactly the same,the wave functions of the spurious states exhibit a much faster staggering than those of the physical states.Such spurious states can be eliminated when applying the finite difference method by introducing an extra Wilson term into the Hamiltonian.Furthermore,it was also found that the number of spurious states can be reduced if we improve the accuracy of the numerical differential formula.The Dirac equation is then solved in a momentum space in which there is no differential operator,and we found that the spurious states can be completely avoided in the momentum space,even without an extra Wilson term.
文摘This paper is addressed to the problem of Galilei invariant basis construction for identical fermions systems. The recently introduced method for spurious state elimination from expansions in harmonic oscillator basis [1] 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F005200650066003400310034003400340037003600360038000000 is adopted and applied to bound states of two particles system with Coulomb potential description. Traditional expansions in this case demonstrate the extremely well-known slow convergence, and hence this is the best problem with known exact solutions for the test of the method. Obtained results demonstrate the significant simplification of the problem and fast convergence of expansions. We show that the application of this general method is very efficient in a test case of the energy spectrum calculation problem of two particles with different masses interacting with Coulomb potential.