The technique to improve the performance of W/TiN stacked gate MOS capacitor with 3nm gate oxide is reported by optimizing the sputtering process of a refractory metal gate electrode and adopting a proper anneal tempe...The technique to improve the performance of W/TiN stacked gate MOS capacitor with 3nm gate oxide is reported by optimizing the sputtering process of a refractory metal gate electrode and adopting a proper anneal temperature to eliminate the damages.Specific methods involved in the optimization of sputtering process include:selecting a proper TiN thickness to reduce stresses;using a smaller sputtering rate to suppress the damages to gate dielectric and adopting a higher N 2/Ar ratio during the TiN sputtering process to further nitride the gate dielectric.With these measures,excellent C V curves are obtained and surface state density ( N ss ) is successfully reduced to below 8×10 10 cm -2 ,which is comparable to the polysilicon gate MOS capacitor.展开更多
A new thin film pulse transformer for using in ISND and model systems is fabricated by a mask sputtering process. This novel pulse transformer consists of four I-shaped CoZrRe nanometer crystal magnetic-film cores and...A new thin film pulse transformer for using in ISND and model systems is fabricated by a mask sputtering process. This novel pulse transformer consists of four I-shaped CoZrRe nanometer crystal magnetic-film cores and a Cu thin film coil, deposited on the micro-crystal glass substrate directly. The thickness of thin film core is between 1 and 3 μm, and the area is between 4mm×6 mm and 12mm×6 mm. The coils provide a relatively high induce of 0.8 μm and can be well operated in a frequency range of 0.001~20 MHz.展开更多
Three types of plasma ion sources designed, manufactured and optimized in the Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority are introduced. Different means were investigated...Three types of plasma ion sources designed, manufactured and optimized in the Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority are introduced. Different means were investigated to generate the discharge current and ion beam current extracted from the plasma. The various plasmas described include a DC glow discharge plasma, an arc discharge plasma and a radio frequency discharge plasma.展开更多
Pd77Cu6Si17(PCS) thin film metallic glasses(TFMGs) with high glass forming ability and hardness were selected as a hard coating for improving the surface hardness of AZ31 magnesium alloy. Both microindentation and nan...Pd77Cu6Si17(PCS) thin film metallic glasses(TFMGs) with high glass forming ability and hardness were selected as a hard coating for improving the surface hardness of AZ31 magnesium alloy. Both microindentation and nanoindentation tests were conducted on specimens with various PCS film thicknesses from 30 to 2000 nm. The apparent hardness and the relative indentation depth(β) were integrated using a quantitative model. The interaction parameters involved and relative hardness values were extracted from iterative calculations. According to the results, surface hardness can be enhanced greatly by PCS TFMGs in the shallow region, followed by gradual decrease with increasing β ratio. In addition, specimens with thinner coatings(e.g., 200nm) showed greater substrate-film interaction and those with thick coatings(e.g., 2000nm) became prone to film cracking. The optimum TFMG coating thickness in this study was estimated to be around 200 nm.展开更多
文摘The technique to improve the performance of W/TiN stacked gate MOS capacitor with 3nm gate oxide is reported by optimizing the sputtering process of a refractory metal gate electrode and adopting a proper anneal temperature to eliminate the damages.Specific methods involved in the optimization of sputtering process include:selecting a proper TiN thickness to reduce stresses;using a smaller sputtering rate to suppress the damages to gate dielectric and adopting a higher N 2/Ar ratio during the TiN sputtering process to further nitride the gate dielectric.With these measures,excellent C V curves are obtained and surface state density ( N ss ) is successfully reduced to below 8×10 10 cm -2 ,which is comparable to the polysilicon gate MOS capacitor.
文摘A new thin film pulse transformer for using in ISND and model systems is fabricated by a mask sputtering process. This novel pulse transformer consists of four I-shaped CoZrRe nanometer crystal magnetic-film cores and a Cu thin film coil, deposited on the micro-crystal glass substrate directly. The thickness of thin film core is between 1 and 3 μm, and the area is between 4mm×6 mm and 12mm×6 mm. The coils provide a relatively high induce of 0.8 μm and can be well operated in a frequency range of 0.001~20 MHz.
文摘Three types of plasma ion sources designed, manufactured and optimized in the Accelerators and Ion Sources Department, Nuclear Research Center, Atomic Energy Authority are introduced. Different means were investigated to generate the discharge current and ion beam current extracted from the plasma. The various plasmas described include a DC glow discharge plasma, an arc discharge plasma and a radio frequency discharge plasma.
基金Project(No.NSC 98-2221-E-110-035-MY3) supported by the National Science Council of Taiwan
文摘Pd77Cu6Si17(PCS) thin film metallic glasses(TFMGs) with high glass forming ability and hardness were selected as a hard coating for improving the surface hardness of AZ31 magnesium alloy. Both microindentation and nanoindentation tests were conducted on specimens with various PCS film thicknesses from 30 to 2000 nm. The apparent hardness and the relative indentation depth(β) were integrated using a quantitative model. The interaction parameters involved and relative hardness values were extracted from iterative calculations. According to the results, surface hardness can be enhanced greatly by PCS TFMGs in the shallow region, followed by gradual decrease with increasing β ratio. In addition, specimens with thinner coatings(e.g., 200nm) showed greater substrate-film interaction and those with thick coatings(e.g., 2000nm) became prone to film cracking. The optimum TFMG coating thickness in this study was estimated to be around 200 nm.