BACKGROUND Lumbar radiculopathy spondylosis is a relatively common orthopedic disease with a high incidence rate.It most commonly occurs in the lumbar 4-5 and lumbar 5-sacral 1 vertebrae,which account for approximatel...BACKGROUND Lumbar radiculopathy spondylosis is a relatively common orthopedic disease with a high incidence rate.It most commonly occurs in the lumbar 4-5 and lumbar 5-sacral 1 vertebrae,which account for approximately 95%of cases.It mostly occurs in people aged 30-50 years old and greatly affects their quality of life.AIM To determine the effect of triple-voltage acupuncture combined with helium-neon laser irradiation on the quality of care and improvement of symptoms in patients with lumbar radiculopathy spondylolisthesis.METHODS In this study,we selected 120 patients with lumbar radiculopathy spondylosis who were treated at our hospital between June 2019 to June 2020.The patients were divided into control and observation groups according to the random number table method,with 60 patients in each group.Patients in the observation group were treated with three-volt moxibustion combined with helium-neon laser irradiation,and those in the control group were treated with lumbar traction.After 1 month of treatment,the lumbar pain scores,lumbar spine motor functions,clinical treatment effects,and nursing satisfaction of the two groups were compared.RESULTS The results showed that acupuncture combined with laser irradiation significantly improved the patients'clinical symptoms,i.e.,reduced their low back pain,significantly lower numerical rating scale pain scores in the observation group than in the control group,and better lumbar spine motility than in the control group,compared to lumbar traction.In addition,they were cared for.The treatment effectiveness rate of the observation group was 95.5%,which was significantly higher than that of the control group(81.67%).Satisfaction with care was higher than 90 points in both groups,but the difference was not statistically significant.CONCLUSION Our study provides a clinical rationale for the future treatment of patients with lumbar spine disease.However,further extensive research is needed for validation.展开更多
The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant ...The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.展开更多
The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and...The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.展开更多
Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising f...Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising flexible thermoelectric materials.However,the PEDOT:PSS film prepared from its commercial aqueous dispersion usually has very low conductivity,thus cannot be directly utilized for TE applications.Here,a simple environmental friendly strategy via femtosecond laser irradiation without any chemical dopants and treatments was demonstrated.Under optimal conditions,the electrical conductivity of the treated film is increased to 803.1 S cm^(-1)from 1.2 S cm^(-1)around three order of magnitude higher,and the power factor is improved to 19.0μW m^(-1)K^(-2),which is enhanced more than 200 times.The mechanism for such remarkable enhancement was attributed to the transition of the PEDOT chains from a coil to a linear or expanded coil conformation,reduction of the interplanar stacking distance,and the removal of insulating PSS with increasing the oxidation level of PEDOT,facilitating the charge transportation.This work presents an effective route for fabricating high-performance flexible conductive polymer films and wearable thermoelectric devices.展开更多
[ Objective ]The aim of this study was to discuss the feasibility of breeding cabbage with high Vc by 532 nm laser.[ Method ] With the material of cabbage, the embryo of cabbage seeds was irradiated by frequency doubl...[ Objective ]The aim of this study was to discuss the feasibility of breeding cabbage with high Vc by 532 nm laser.[ Method ] With the material of cabbage, the embryo of cabbage seeds was irradiated by frequency doubled Nd :YAG laser with different power densities and time, and the effects of laser mode on functional leaf area, chlorophyll and Vc contents in cabbage seedlings were also studied. [Result] The results showed that functional leaf area and chlorophyll content were related to laser power density and time when laser power density was 2 -20 mW/mm^2, while the optimal effect was observed at 14 mW/mm^2 for 1 min. The content of Vc in cabbage seedlings was related to dosage of laser irradiation when irradiating time ranged from 1 to 5 min, and the optimal effect was observed at 2.8 J (20 mW/mm^2, 3 min). [Conclusion] Irradiating the embryo of cabbage seeds with proper irradiation dosage of 532 nm laser can increase its effect on the Vc content significantly.展开更多
Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the...Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the proliferation and osteogenic differentiation of human PDL (hPDL) cells. Cultured hPDL cel Is were irradiated (660 nm) daily with doses of O, 1, 2 or 4 J .cm-2. Cell proliferation was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the effect of LPLI on osteogenic differentiation was assessed by Alizarin Red S staining and alkaline phosphatase (ALP) activity. Additionally, osteogenic marker gene expression was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). Our data showed that LPLI at a dose of 2 J.cm-2 significantly promoted hPDL cell proliferation at days 3 and 5. In addition, LPLI at energy doses of 2 and 4 J.cm-2 showed potential osteogenic capacity, as it stimulated ALP activity, calcium deposition, and osteogenic gene expression. We also showed that cyclic adenosine monophosphate (cAMP) is a critical regulator of the LPLI-mediated effects on hPDL cells. This study shows that LPLI can promote the proliferation and osteogenic differentiation of hPDL cells. These results suggest the potential use of LPLI in clinical applications for periodontal tissue regeneration.展开更多
Stimulated photoluminescence (PL) emission has been observed from an oxide structure of silicon when optically excited by a radiation of 514nm laser. Sharp twin peaks at 694 and 692nm are dominated by stimulated emi...Stimulated photoluminescence (PL) emission has been observed from an oxide structure of silicon when optically excited by a radiation of 514nm laser. Sharp twin peaks at 694 and 692nm are dominated by stimulated emission, which can be demonstrated by its threshold behaviour and linear transition of emission intensity as a function of pump power. The oxide structure is formed by laser irradiation on silicon and its annealing treatment. A model for explaining the stimulated emission is proposed, in which the trap states of the interface between an oxide of silicon and porous nanocrystal play an important role.展开更多
Oral submucous fibrosis (OSF) is a potentially malignant disorder that is characterized by a progressive fibrosis in the oral submucosa. Arecoline, an alkaloid compound of the areca nut, is reported to be a major ae...Oral submucous fibrosis (OSF) is a potentially malignant disorder that is characterized by a progressive fibrosis in the oral submucosa. Arecoline, an alkaloid compound of the areca nut, is reported to be a major aetiological factor in the development of OSF. Low-power laser irradiation (LPLI) has been reported to be beneficial in fibrosis prevention in different damaged organs. The aim of this study was to investigate the potential therapeutic effects of LPLI on arecoline-induced fibrosis. Arecoline- stimulated human gingival fibroblasts (HGFs) were treated with or without LPLI. The expression levels of the fibrotic marker genes alpha-smooth muscle actin (a-SMA) and connective tissue growth factor (CTGF/CCN2) were analysed by quantitative real- time reverse transcription polymerase chain reaction (RT-PCR) and western blots. In addition, the transcriptional activity of CCN2 was further determined by a reporter assay. The results indicated that arecoline increased the messenger RNA and protein expression of CCN2 and a-SMA in HGF. Interestingly, both LPLI and forskolin, an adenylyl cyclase activator, reduced the expression of arecoline-mediated fibrotic marker genes and inhibited the transcriptional activity of CCN2. Moreover, pretreatment with SQ22536, an adenylyl cyclase inhibitor, blocked LPLI's inhibition of the expression of arecoline-mediated fibrotic marker genes. Our data suggest that LPLI may inhibit the expression of arecoline-mediated fibrotic marker genes via the cAMP signalling pathway.展开更多
Laser shock processing(LSP),also known as laser peening,is a novel surface treatment technique in the past few years.Compressive residual stresses which imparted by LSP are very important for improving fatigue,corro...Laser shock processing(LSP),also known as laser peening,is a novel surface treatment technique in the past few years.Compressive residual stresses which imparted by LSP are very important for improving fatigue,corrosion and wea rresistance of metals.Finite element analysis(FEA) simulation using ABAQUS software has been applied to predict residualstresses induced by LSP on Ti-6Al-4V titanium alloy with laser pulse duration 30 ns and water confined ablation mode.The residual stress field generated by different shape laser spots was studied,and the square laser spot is shown the most suitability for avoiding stress lack phenomenon and overlapping LSP.Surface residual stresses and plastically affected depth within single square spot both increased with the increase of laser intensity and laser shock times.Furthermore,compared with circle and ellipse spot,the residual stress distribution in overlapping square spots is very uniform only with small overlapping ratio.LSP with square spot can process advantageous residual stress field,and this technique will be used widely.展开更多
To understand the surface morphology evolution of fused silica induced by 10.6μm CO2 laser irradiation at different parameters, this paper reports that optical microscopy, profilometry, and hydrophilicity tests are u...To understand the surface morphology evolution of fused silica induced by 10.6μm CO2 laser irradiation at different parameters, this paper reports that optical microscopy, profilometry, and hydrophilicity tests are utilized to characterize the surface structure and roughness of the laser irradiated area. The results show that three typical surface morphologies and two typical hydrophilicity test images are observed at different laser powers and pulse durations. The correlations between surface temperature and surface morphology as well as hydrophilicity behaviours are presented. The different hydrophilicity behaviours are related to surface structures of the laser-induced crater and thermal diffusion area. The thermal diffusion length monotonously increases with increasing laser power and pulse duration. The crater width is almost determined by the laser beam size. The crater depth is more sensitive to the laser power and pulse duration than the crater width.展开更多
The laser irradiation effect on the SERS intensity for Ag film is discussed using crystal violet (CV) as a probe. The thickness of silver film,the etching time of the glass slide by gaseous hydrogen fluoride, and the ...The laser irradiation effect on the SERS intensity for Ag film is discussed using crystal violet (CV) as a probe. The thickness of silver film,the etching time of the glass slide by gaseous hydrogen fluoride, and the laser irradiation time for different amounts of CV on silver films were investigated. The laser burn out model was proposed to explain the dependence of the SERS intensity of CV on the laser irradiation time.展开更多
Systematic experiments about the antitumor effects of low energy laser irradiation combined with the traditional antitumor medicine of cyclophosphamide were conducted using the experimental model of mouse S180 ascite...Systematic experiments about the antitumor effects of low energy laser irradiation combined with the traditional antitumor medicine of cyclophosphamide were conducted using the experimental model of mouse S180 ascites sarcoma.The three groups of tumor bearing mice were irradiated upon the inner corners with the dosages of 11 00,14 67 and 22 00 J·cm -2 LELI respectively,and injected with CYT intraperitoneally to observe the changes of the survival time,the ascites growth speed,and the kinetic changes of immune functions.The survival times of the three groups of CYT/LELI combination were obviously longer than those of the tumor and CYT control groups.Correspondingly,the amounts of ascites,tumor cells densities and total tumor cells in CYT/LELI groups decreased significantly,while the death ratio of the tumor cells increased.Comparatively,the group of 22 00 J·cm -2 LELI combined with CYT showed the most ideal antitumor effects,and the life prolongation ratio was up to 53 20%.展开更多
Silver nanoparticles (AgNPs) were fabricated by repetitive irradiation of near ultraviolet (UV) nanosecond laser pulses (355 nm, 5 ns) in an aqueous solution of silver nitrate in the absence of stabilizing agents. A b...Silver nanoparticles (AgNPs) were fabricated by repetitive irradiation of near ultraviolet (UV) nanosecond laser pulses (355 nm, 5 ns) in an aqueous solution of silver nitrate in the absence of stabilizing agents. A broad absorption peak was observed in the visible region showing the formation of a variety of AgNPs in the solution. Among the variety of products, it was found that silver nanocubes (AgNCs) grew in size with longer laser irradiation time. The size of AgNCs also increased with higher laser intensity. The average size of AgNCs, investigated by a scanning electron microscope (SEM) was in the range of 75 - 200 nm. The number of reduced atoms in AgNCs as a function of laser intensity showed that the AgNCs are apparently produced by a four photon process, implying that the formation of dimer silver atoms is essential for the formation.展开更多
Laser assisted turning (LAT) is one of the advanced machining technologies, which uses laser power to heat the surface of a workpiece before the material is removed. It has several advantages of low manufacturing co...Laser assisted turning (LAT) is one of the advanced machining technologies, which uses laser power to heat the surface of a workpiece before the material is removed. It has several advantages of low manufacturing costs, high productivity and high qualities to machine difficult-to-cut materials such as silicon nitride, muUite, zirconia and Ni. A large part of studies on LAT have been focused on a round bar. With increasing demands for high quality products and high performance engineering system, the researches on LAT for clover and square section members are necessary. But, these workpieces are impossible to be machined on conventional CNC lathe and to generate NC code with current CAM softwares. As a basic research for combining LAT with a tilting index table type 5-axis machining center, i.e. laser assisted turn-mill, a new method is suggested to generate NC code that can process various types of clover and square section members through development of C++ program.展开更多
We demonstrate a method of fabricating through micro-holes and micro-hole arrays in silicon using femtosecond laser irradiation and selective chemical etching. The micro-hole formation mechanism is identified as the c...We demonstrate a method of fabricating through micro-holes and micro-hole arrays in silicon using femtosecond laser irradiation and selective chemical etching. The micro-hole formation mechanism is identified as the chemical reaction of the femtosecond laser-induced structure change zone and hydrofluoric acid solution. The morphologies of the through micro-holes and micro-hole arrays are characterized by using scanning electronic microscopy, The effects of the pulse number on the depth and diameter of the holes are investigated. Honeycomb arrays of through micro-holes fabricated at different laser powers and pulse numbers are demonstrated.展开更多
We predict ultrafast modulation of the pure molten metal surface stress fields under the irradiation of the single femtosecond laser pulse through the two-temperature model molecular-dynamics simulations. High-resolut...We predict ultrafast modulation of the pure molten metal surface stress fields under the irradiation of the single femtosecond laser pulse through the two-temperature model molecular-dynamics simulations. High-resolution and precision calculations are used to resolve the ultrafast laser-induced anisotropic relaxations of the pressure components on the time-scale comparable to the intrinsic liquid density relaxation time. The magnitudes of the dynamic surface tensions are found being modulated sharply within picoseconds after the irradiation, due to the development of the nanometer scale non-hydrostatic regime behind the exterior atomic layer of the liquid surfaces.The reported novel regulation mechanism of the liquid surface stress field and the dynamic surface tension hints at levitating the manipulation of liquid surfaces, such as ultrafast steering the surface directional transport and patterning.展开更多
An opportunity to use laser radiation as a means to reduce negative aftermath of acute and prolonged exposure to ionizing radiation was checked. The mice were exposed to γ- rays of ^60Co (whole body irradiation) in...An opportunity to use laser radiation as a means to reduce negative aftermath of acute and prolonged exposure to ionizing radiation was checked. The mice were exposed to γ- rays of ^60Co (whole body irradiation) in the dose of 7 Gy (the transitional clinical form of the acute radiation sickness). The dose rate at acute irradiation was 1.14 Gy/min, and at prolonged exposure, 0.027 Gy/min. Laser radiation in the dose l mJ/cm^2 was used to irradiate only the back of a mouse. First, the mice were exposed to γ-radiation, then to laser radiation. The time interval between two types of irradiation did not exceed 30 min. It was shown that the radiation protection of mice with laser radiation is possible at exposure to ionizing radiation in a wide dose interval and can reduce negative after-effects of both the acute and prolonged radiation exposure.展开更多
In laser-guided bomb attacking process,the target indication from the laser target designator is the premise for the bomb to hit the target accurately.Considering the lack of quantitative study of the irradiation area...In laser-guided bomb attacking process,the target indication from the laser target designator is the premise for the bomb to hit the target accurately.Considering the lack of quantitative study of the irradiation area of the laser target designator,this paper,based on the existing aircraft motion model and the laser transmission model,uses two aircraft as respectively the carrier of the laser-guided bomb and the carrier of the laser designator and proposes a method to calculate the global irradiation area of the airborne laser designator.By using the proposed algorithm,the global irradiation area when attacking a large flat target or a large spherical target is simulated respectively.Finally,according to the simulation results,the influences of different factors on the shapes of the irradiation area are discussed in detail.展开更多
Based on the two-dimensional model, this paper compares the hydrodynamics of slab x-ray laser plasma produced by different nonuniform line focused irradiations. It finds that the average intensity and the duration of ...Based on the two-dimensional model, this paper compares the hydrodynamics of slab x-ray laser plasma produced by different nonuniform line focused irradiations. It finds that the average intensity and the duration of laser pulse and the overall shape of the intensity distribution in the focal line have different influences on the plasma. Calculations show that the evolution of temperature variation is more sensitive to the pulse duration and the electron density variation is more sensitive to the pulse intensity. Pulses with duration of 200 ps to 500 ps and with intensity of 0.2 TW/cm2 to 1.0 TW/cm2 are proved acceptable in slab x-ray lasers.展开更多
In this paper, we investigate the laser irradiation of ZnO single crystals and its influence on photoluminescence. Our study shows that the photoluminescence of ZnO single crystals strongly depends on surface morpholo...In this paper, we investigate the laser irradiation of ZnO single crystals and its influence on photoluminescence. Our study shows that the photoluminescence of ZnO single crystals strongly depends on surface morphologies. The ultraviolet emissions of laser treated-ZnO under 200 mJ/cm^2 become stronger, whereas for those deteriorated by irradiation above 200 mJ/cm^2, the green emissions centred at 2.53 eV are significantly enhanced with a red-shift to 2.19 eV, probably due to the changes in the charge states of the defects. Enhanced yellow-green emissions are well resolved into four peaks at around 1.98, 2.19, 2.36, and 2.53 eV due to a shallow irradiation depth. Possible origins are proposed and discussed.展开更多
文摘BACKGROUND Lumbar radiculopathy spondylosis is a relatively common orthopedic disease with a high incidence rate.It most commonly occurs in the lumbar 4-5 and lumbar 5-sacral 1 vertebrae,which account for approximately 95%of cases.It mostly occurs in people aged 30-50 years old and greatly affects their quality of life.AIM To determine the effect of triple-voltage acupuncture combined with helium-neon laser irradiation on the quality of care and improvement of symptoms in patients with lumbar radiculopathy spondylolisthesis.METHODS In this study,we selected 120 patients with lumbar radiculopathy spondylosis who were treated at our hospital between June 2019 to June 2020.The patients were divided into control and observation groups according to the random number table method,with 60 patients in each group.Patients in the observation group were treated with three-volt moxibustion combined with helium-neon laser irradiation,and those in the control group were treated with lumbar traction.After 1 month of treatment,the lumbar pain scores,lumbar spine motor functions,clinical treatment effects,and nursing satisfaction of the two groups were compared.RESULTS The results showed that acupuncture combined with laser irradiation significantly improved the patients'clinical symptoms,i.e.,reduced their low back pain,significantly lower numerical rating scale pain scores in the observation group than in the control group,and better lumbar spine motility than in the control group,compared to lumbar traction.In addition,they were cared for.The treatment effectiveness rate of the observation group was 95.5%,which was significantly higher than that of the control group(81.67%).Satisfaction with care was higher than 90 points in both groups,but the difference was not statistically significant.CONCLUSION Our study provides a clinical rationale for the future treatment of patients with lumbar spine disease.However,further extensive research is needed for validation.
基金supported by the 2021 Open Project Fund of Science and Technology on Electromechanical Dynamic Control Laboratory,grant number 212-C-J-F-QT-2022-0020China Postdoctoral Science Foundation,grant number 2021M701713+1 种基金Postgraduate Research&Practice Innovation Program of Jiangsu Province,grant number KYCX23_0511the Jiangsu Funding Program for Excellent Postdoctoral Talent,grant number 20220ZB245。
文摘The phenomenon of a target echo peak overlapping with the backscattered echo peak significantly undermines the detection range and precision of underwater laser fuzes.To overcome this issue,we propose a four-quadrant dual-beam circumferential scanning laser fuze to distinguish various interference signals and provide more real-time data for the backscatter filtering algorithm.This enhances the algorithm loading capability of the fuze.In order to address the problem of insufficient filtering capacity in existing linear backscatter filtering algorithms,we develop a nonlinear backscattering adaptive filter based on the spline adaptive filter least mean square(SAF-LMS)algorithm.We also designed an algorithm pause module to retain the original trend of the target echo peak,improving the time discrimination accuracy and anti-interference capability of the fuze.Finally,experiments are conducted with varying signal-to-noise ratios of the original underwater target echo signals.The experimental results show that the average signal-to-noise ratio before and after filtering can be improved by more than31 d B,with an increase of up to 76%in extreme detection distance.
基金supported by the Korea Basic Science Institute(National research Facilities and Equipment Center)grant funded by the Ministry of Education(2019R1A6C1010042,2021R1A6C103A427)the financial support from the National Research Foundation of Korea(NRF)(2022R1A2C2010686,2022R1A4A3033528,2021R1I1A1A01060380,2021R1C1C2010726,2019H1D3A1A01071209)。
文摘The electrocatalytic oxidation of biomass-derived furfural(FF)feedstocks into 2-furoic acid(FA)holds immense industrial potential in optics,cosmetics,polymers,and food.Herein,we fabricated Co O/Ni O/nickel foam(NF)and Cu_(2)O/Ni O/NF electrodes via in situ pulsed laser irradiation in liquids(PLIL)for the bifunctional electrocatalysis of oxygen evolution reaction(OER)and furfural oxidation reaction(FOR),respectively.Simultaneous oxidation of NF surface to NiO and deposition of CoO and/or Cu_(2)O on NF during PLIL offer distinct advantages for enhancing both the OER and FOR.CoO/NiO/NF electrocatalyst provides a consistently low overpotential of~359 m V(OER)at 10 m A/cm^(2),achieving the maximum FA yield(~16.37 m M)with 61.5%selectivity,79.5%carbon balance,and a remarkable Faradaic efficiency of~90.1%during 2 h of FOR at 1.43 V(vs.reversible hydrogen electrode).Mechanistic pathway via in situ electrochemical-Raman spectroscopy on CoO/NiO/NF reveals the involvement of phase transition intermediates(NiOOH and CoOOH)as surface-active centers during electrochemical oxidation.The carbonyl carbon in FF is attacked by hydroxyl groups to form unstable hydrates that subsequently undergo further oxidation to yield FA products.This method holds promise for large-scale applications,enabling simultaneous production of renewable building materials and fuel.
基金supported by the National Key Research and Development Program of China(2020YFA0715000)the Guangdong Basic and Applied Basic Research Foundation(2020A1515110250,2021B1515120041)+1 种基金the Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory(XHT2020-005)the Fundamental Research Funds for the Central Universities(2020IVA068,2021lll007JC)
文摘Because poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)is water processable,thermally stable,and highly conductive,PEDOT:PSS and its composites have been considered to be one of the most promising flexible thermoelectric materials.However,the PEDOT:PSS film prepared from its commercial aqueous dispersion usually has very low conductivity,thus cannot be directly utilized for TE applications.Here,a simple environmental friendly strategy via femtosecond laser irradiation without any chemical dopants and treatments was demonstrated.Under optimal conditions,the electrical conductivity of the treated film is increased to 803.1 S cm^(-1)from 1.2 S cm^(-1)around three order of magnitude higher,and the power factor is improved to 19.0μW m^(-1)K^(-2),which is enhanced more than 200 times.The mechanism for such remarkable enhancement was attributed to the transition of the PEDOT chains from a coil to a linear or expanded coil conformation,reduction of the interplanar stacking distance,and the removal of insulating PSS with increasing the oxidation level of PEDOT,facilitating the charge transportation.This work presents an effective route for fabricating high-performance flexible conductive polymer films and wearable thermoelectric devices.
基金Supported by Fund from Jilin Provincial Science & Technology Department(20090541)Project from Department of Education ofJilin Province(200828)~~
文摘[ Objective ]The aim of this study was to discuss the feasibility of breeding cabbage with high Vc by 532 nm laser.[ Method ] With the material of cabbage, the embryo of cabbage seeds was irradiated by frequency doubled Nd :YAG laser with different power densities and time, and the effects of laser mode on functional leaf area, chlorophyll and Vc contents in cabbage seedlings were also studied. [Result] The results showed that functional leaf area and chlorophyll content were related to laser power density and time when laser power density was 2 -20 mW/mm^2, while the optimal effect was observed at 14 mW/mm^2 for 1 min. The content of Vc in cabbage seedlings was related to dosage of laser irradiation when irradiating time ranged from 1 to 5 min, and the optimal effect was observed at 2.8 J (20 mW/mm^2, 3 min). [Conclusion] Irradiating the embryo of cabbage seeds with proper irradiation dosage of 532 nm laser can increase its effect on the Vc content significantly.
基金supported by grants from the Kaohsiung Medical University of Taiwan (KMU-Q099018 and KMU-Q098025)
文摘Retaining or improving periodontal ligament (PDL) function is crucial for restoring periodontal defects. The aim of this study was to evaluate the physiological effects of low-power laser irradiation (LPLI) on the proliferation and osteogenic differentiation of human PDL (hPDL) cells. Cultured hPDL cel Is were irradiated (660 nm) daily with doses of O, 1, 2 or 4 J .cm-2. Cell proliferation was evaluated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay, and the effect of LPLI on osteogenic differentiation was assessed by Alizarin Red S staining and alkaline phosphatase (ALP) activity. Additionally, osteogenic marker gene expression was confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR). Our data showed that LPLI at a dose of 2 J.cm-2 significantly promoted hPDL cell proliferation at days 3 and 5. In addition, LPLI at energy doses of 2 and 4 J.cm-2 showed potential osteogenic capacity, as it stimulated ALP activity, calcium deposition, and osteogenic gene expression. We also showed that cyclic adenosine monophosphate (cAMP) is a critical regulator of the LPLI-mediated effects on hPDL cells. This study shows that LPLI can promote the proliferation and osteogenic differentiation of hPDL cells. These results suggest the potential use of LPLI in clinical applications for periodontal tissue regeneration.
基金supported by the National Natural Science Foundation of China (Grant No 10764002)
文摘Stimulated photoluminescence (PL) emission has been observed from an oxide structure of silicon when optically excited by a radiation of 514nm laser. Sharp twin peaks at 694 and 692nm are dominated by stimulated emission, which can be demonstrated by its threshold behaviour and linear transition of emission intensity as a function of pump power. The oxide structure is formed by laser irradiation on silicon and its annealing treatment. A model for explaining the stimulated emission is proposed, in which the trap states of the interface between an oxide of silicon and porous nanocrystal play an important role.
基金supported by the Kaohsiung Municipal Ta-Tung Hospital(grant kmtth-102-010)the Kaohsiung Medical University in Taiwan under the grant“Aim for the Top Universities Grant”(KMU-TP103B08)
文摘Oral submucous fibrosis (OSF) is a potentially malignant disorder that is characterized by a progressive fibrosis in the oral submucosa. Arecoline, an alkaloid compound of the areca nut, is reported to be a major aetiological factor in the development of OSF. Low-power laser irradiation (LPLI) has been reported to be beneficial in fibrosis prevention in different damaged organs. The aim of this study was to investigate the potential therapeutic effects of LPLI on arecoline-induced fibrosis. Arecoline- stimulated human gingival fibroblasts (HGFs) were treated with or without LPLI. The expression levels of the fibrotic marker genes alpha-smooth muscle actin (a-SMA) and connective tissue growth factor (CTGF/CCN2) were analysed by quantitative real- time reverse transcription polymerase chain reaction (RT-PCR) and western blots. In addition, the transcriptional activity of CCN2 was further determined by a reporter assay. The results indicated that arecoline increased the messenger RNA and protein expression of CCN2 and a-SMA in HGF. Interestingly, both LPLI and forskolin, an adenylyl cyclase activator, reduced the expression of arecoline-mediated fibrotic marker genes and inhibited the transcriptional activity of CCN2. Moreover, pretreatment with SQ22536, an adenylyl cyclase inhibitor, blocked LPLI's inhibition of the expression of arecoline-mediated fibrotic marker genes. Our data suggest that LPLI may inhibit the expression of arecoline-mediated fibrotic marker genes via the cAMP signalling pathway.
基金Project supported by the Foundation of National Key Laboratory of Science and Technology on Power Beam Processing(Grant No.9140C4505020705)
文摘Laser shock processing(LSP),also known as laser peening,is a novel surface treatment technique in the past few years.Compressive residual stresses which imparted by LSP are very important for improving fatigue,corrosion and wea rresistance of metals.Finite element analysis(FEA) simulation using ABAQUS software has been applied to predict residualstresses induced by LSP on Ti-6Al-4V titanium alloy with laser pulse duration 30 ns and water confined ablation mode.The residual stress field generated by different shape laser spots was studied,and the square laser spot is shown the most suitability for avoiding stress lack phenomenon and overlapping LSP.Surface residual stresses and plastically affected depth within single square spot both increased with the increase of laser intensity and laser shock times.Furthermore,compared with circle and ellipse spot,the residual stress distribution in overlapping square spots is very uniform only with small overlapping ratio.LSP with square spot can process advantageous residual stress field,and this technique will be used widely.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2008AA8040508)the Foundation for Young Scholars of University of Electronic Science and Technology of China (Grant No. L08010401JX0806)
文摘To understand the surface morphology evolution of fused silica induced by 10.6μm CO2 laser irradiation at different parameters, this paper reports that optical microscopy, profilometry, and hydrophilicity tests are utilized to characterize the surface structure and roughness of the laser irradiated area. The results show that three typical surface morphologies and two typical hydrophilicity test images are observed at different laser powers and pulse durations. The correlations between surface temperature and surface morphology as well as hydrophilicity behaviours are presented. The different hydrophilicity behaviours are related to surface structures of the laser-induced crater and thermal diffusion area. The thermal diffusion length monotonously increases with increasing laser power and pulse duration. The crater width is almost determined by the laser beam size. The crater depth is more sensitive to the laser power and pulse duration than the crater width.
文摘The laser irradiation effect on the SERS intensity for Ag film is discussed using crystal violet (CV) as a probe. The thickness of silver film,the etching time of the glass slide by gaseous hydrogen fluoride, and the laser irradiation time for different amounts of CV on silver films were investigated. The laser burn out model was proposed to explain the dependence of the SERS intensity of CV on the laser irradiation time.
文摘Systematic experiments about the antitumor effects of low energy laser irradiation combined with the traditional antitumor medicine of cyclophosphamide were conducted using the experimental model of mouse S180 ascites sarcoma.The three groups of tumor bearing mice were irradiated upon the inner corners with the dosages of 11 00,14 67 and 22 00 J·cm -2 LELI respectively,and injected with CYT intraperitoneally to observe the changes of the survival time,the ascites growth speed,and the kinetic changes of immune functions.The survival times of the three groups of CYT/LELI combination were obviously longer than those of the tumor and CYT control groups.Correspondingly,the amounts of ascites,tumor cells densities and total tumor cells in CYT/LELI groups decreased significantly,while the death ratio of the tumor cells increased.Comparatively,the group of 22 00 J·cm -2 LELI combined with CYT showed the most ideal antitumor effects,and the life prolongation ratio was up to 53 20%.
文摘Silver nanoparticles (AgNPs) were fabricated by repetitive irradiation of near ultraviolet (UV) nanosecond laser pulses (355 nm, 5 ns) in an aqueous solution of silver nitrate in the absence of stabilizing agents. A broad absorption peak was observed in the visible region showing the formation of a variety of AgNPs in the solution. Among the variety of products, it was found that silver nanocubes (AgNCs) grew in size with longer laser irradiation time. The size of AgNCs also increased with higher laser intensity. The average size of AgNCs, investigated by a scanning electron microscope (SEM) was in the range of 75 - 200 nm. The number of reduced atoms in AgNCs as a function of laser intensity showed that the AgNCs are apparently produced by a four photon process, implying that the formation of dimer silver atoms is essential for the formation.
基金Project(2011-0017407)supported by the National Research Foundation of Korea(NRF)funded by Korea government(MEST)
文摘Laser assisted turning (LAT) is one of the advanced machining technologies, which uses laser power to heat the surface of a workpiece before the material is removed. It has several advantages of low manufacturing costs, high productivity and high qualities to machine difficult-to-cut materials such as silicon nitride, muUite, zirconia and Ni. A large part of studies on LAT have been focused on a round bar. With increasing demands for high quality products and high performance engineering system, the researches on LAT for clover and square section members are necessary. But, these workpieces are impossible to be machined on conventional CNC lathe and to generate NC code with current CAM softwares. As a basic research for combining LAT with a tilting index table type 5-axis machining center, i.e. laser assisted turn-mill, a new method is suggested to generate NC code that can process various types of clover and square section members through development of C++ program.
基金Supported by the National Basic Research Program of China under Grant No 2012CB921804the National Natural Science Foundation of China under Grant Nos 11204236 and 61308006the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘We demonstrate a method of fabricating through micro-holes and micro-hole arrays in silicon using femtosecond laser irradiation and selective chemical etching. The micro-hole formation mechanism is identified as the chemical reaction of the femtosecond laser-induced structure change zone and hydrofluoric acid solution. The morphologies of the through micro-holes and micro-hole arrays are characterized by using scanning electronic microscopy, The effects of the pulse number on the depth and diameter of the holes are investigated. Honeycomb arrays of through micro-holes fabricated at different laser powers and pulse numbers are demonstrated.
基金the National Key R&D Program of China (Grant No. 2019YFA0705000)the National Natural Science Foundation of China (Grant Nos. 11874147, 11933005, and 12134001)+3 种基金the Science and Technology Commission of Shanghai Municipality (Grant No. 21DZ1101500)the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01)the Natural Science Foundation of Chongqing, China (Grant No. cstc2021jcyj-msxm X1144)the State Key Laboratory of Solidification Processing in NWPU (Grant No. SKLSP202105)。
文摘We predict ultrafast modulation of the pure molten metal surface stress fields under the irradiation of the single femtosecond laser pulse through the two-temperature model molecular-dynamics simulations. High-resolution and precision calculations are used to resolve the ultrafast laser-induced anisotropic relaxations of the pressure components on the time-scale comparable to the intrinsic liquid density relaxation time. The magnitudes of the dynamic surface tensions are found being modulated sharply within picoseconds after the irradiation, due to the development of the nanometer scale non-hydrostatic regime behind the exterior atomic layer of the liquid surfaces.The reported novel regulation mechanism of the liquid surface stress field and the dynamic surface tension hints at levitating the manipulation of liquid surfaces, such as ultrafast steering the surface directional transport and patterning.
文摘An opportunity to use laser radiation as a means to reduce negative aftermath of acute and prolonged exposure to ionizing radiation was checked. The mice were exposed to γ- rays of ^60Co (whole body irradiation) in the dose of 7 Gy (the transitional clinical form of the acute radiation sickness). The dose rate at acute irradiation was 1.14 Gy/min, and at prolonged exposure, 0.027 Gy/min. Laser radiation in the dose l mJ/cm^2 was used to irradiate only the back of a mouse. First, the mice were exposed to γ-radiation, then to laser radiation. The time interval between two types of irradiation did not exceed 30 min. It was shown that the radiation protection of mice with laser radiation is possible at exposure to ionizing radiation in a wide dose interval and can reduce negative after-effects of both the acute and prolonged radiation exposure.
基金supported by the Aeronautical Science Foundation of China(ASFC-20135153031ASFC-20135553035ASFC-2017ZC53033)
文摘In laser-guided bomb attacking process,the target indication from the laser target designator is the premise for the bomb to hit the target accurately.Considering the lack of quantitative study of the irradiation area of the laser target designator,this paper,based on the existing aircraft motion model and the laser transmission model,uses two aircraft as respectively the carrier of the laser-guided bomb and the carrier of the laser designator and proposes a method to calculate the global irradiation area of the airborne laser designator.By using the proposed algorithm,the global irradiation area when attacking a large flat target or a large spherical target is simulated respectively.Finally,according to the simulation results,the influences of different factors on the shapes of the irradiation area are discussed in detail.
基金suported by the National Natural Science Foundation of China (Grant No. 10874242)the National Basic Research Program of China (973 Program) (Grant No. 2007CB815105)Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070290008)
文摘Based on the two-dimensional model, this paper compares the hydrodynamics of slab x-ray laser plasma produced by different nonuniform line focused irradiations. It finds that the average intensity and the duration of laser pulse and the overall shape of the intensity distribution in the focal line have different influences on the plasma. Calculations show that the evolution of temperature variation is more sensitive to the pulse duration and the electron density variation is more sensitive to the pulse intensity. Pulses with duration of 200 ps to 500 ps and with intensity of 0.2 TW/cm2 to 1.0 TW/cm2 are proved acceptable in slab x-ray lasers.
基金Project supported by the National Natural Science Foundation of China(Grant No.10974009)
文摘In this paper, we investigate the laser irradiation of ZnO single crystals and its influence on photoluminescence. Our study shows that the photoluminescence of ZnO single crystals strongly depends on surface morphologies. The ultraviolet emissions of laser treated-ZnO under 200 mJ/cm^2 become stronger, whereas for those deteriorated by irradiation above 200 mJ/cm^2, the green emissions centred at 2.53 eV are significantly enhanced with a red-shift to 2.19 eV, probably due to the changes in the charge states of the defects. Enhanced yellow-green emissions are well resolved into four peaks at around 1.98, 2.19, 2.36, and 2.53 eV due to a shallow irradiation depth. Possible origins are proposed and discussed.