For two normal populations with unknown means μ and unknown variances σ2, assume that there are simple order restrictions among the means and variances: μ1 < μ2 and σ12 >σ22 > 0. This case is said to be...For two normal populations with unknown means μ and unknown variances σ2, assume that there are simple order restrictions among the means and variances: μ1 < μ2 and σ12 >σ22 > 0. This case is said to be simultaneous order restriction by Shi (Maximum likelihood estimation of means and variances from normal populations under simultaneous order restrictions, J. Multivariate Anal., 50(1994), 282-293.) and an iterative algorithm of computing the order restricted maximum likelihood estimates of μi and σi2 was given in that paper. This paper shows that the restricted maximum likelihood estimate of μi has smaller mean square loss than the usual estimate xi under some conditions.展开更多
文摘For two normal populations with unknown means μ and unknown variances σ2, assume that there are simple order restrictions among the means and variances: μ1 < μ2 and σ12 >σ22 > 0. This case is said to be simultaneous order restriction by Shi (Maximum likelihood estimation of means and variances from normal populations under simultaneous order restrictions, J. Multivariate Anal., 50(1994), 282-293.) and an iterative algorithm of computing the order restricted maximum likelihood estimates of μi and σi2 was given in that paper. This paper shows that the restricted maximum likelihood estimate of μi has smaller mean square loss than the usual estimate xi under some conditions.