Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, ani...Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbitrary boundary conditions on one edge and simply supported on other edge. The rectangular laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. This study presents the elastic analysis of laminated composite plates subjected to sinusoidal mechanical loading under arbitrary boundary conditions. Least square finite element solutions for displacements and stresses are investigated using a mathematical model, called a state-space model, which allows us to simultaneously solve for these field variables in the composite structure’s domain and ensure that continuity conditions are satisfied at layer interfaces. The governing equations are derived from this model using a numerical technique called the least-squares finite element method (LSFEM). These LSFEMs seek to minimize the squares of the governing equations and the associated side conditions residuals over the computational domain. The model is comprised of layerwise variables such as displacements, out-of-plane stresses, and in- plane strains, treated as independent variables. Numerical results are presented to demonstrate the response of the laminated composite plates under various arbitrary boundary conditions using LSFEM and compared with the 3D elasticity solution available in the literature.展开更多
Bubble coalescence reduces specific area and weakens the work performance of bubble column. The bubble coalescence near gas sparger which is caused mainly by bubble growing is different from the ones occurring in majo...Bubble coalescence reduces specific area and weakens the work performance of bubble column. The bubble coalescence near gas sparger which is caused mainly by bubble growing is different from the ones occurring in major liquid. Bubble coalescence efficiency near gas sparger is influenced by many factors including sparger configuration, gas flow rate, bubble deformation, solution composition, etc. This work has conducted a set of visual experiments to study the coalescence characteristics near multi-orifice plate. The experiment parameters cover a wide range of conditions including large scope of gas flow rate,different kinds of solution and orifice configurations. The experimental results suggest that coalescence time is applicable to reflect the influence of the pitch of orifices and gas flow rate on bubble coalescence efficiency. As the number of orifices increases, bubble coalescence efficiency is reduced by the disturbance from the bubbles at adjacent orifices. A hindering coefficient is used to consider the hindering effect of additives on bubble coalescence efficiency. Finally a new calculation expression is established to predict bubble coalescence efficiency near multi-orifice plate whose fundamental form is based on the logistic curve of binary response. The calculated values that refer to this calculation expression are well consistent with the experimental results.展开更多
Based on a self-developed hydrodynamic cavitation device with different geometric parameters for circular multi-orifice plates,turbulence characteristics of cavitating flow behind multi-orifice plates,including the ef...Based on a self-developed hydrodynamic cavitation device with different geometric parameters for circular multi-orifice plates,turbulence characteristics of cavitating flow behind multi-orifice plates,including the effects of orifice number and orifice layout on longitudinal velocity,turbulence intensity,and Reynolds stress,were measured with the particle image velocimetry(PIV)technique.Flow regimes of the cavitating flow were also observed with high-speed photography.The experimental results showed the following:(1)high-velocity multiple cavitating jets occurred behind the multi-orifice plates,and the cavitating flow fields were characterized by topological structures;(2)the longitudinal velocity at each cross-section exhibited a sawtooth-like distribution close to the multi-orifice plate,and each sawtooth indicated one jet issuing from one orifice;(3)there were similar magnitudes and forms for the longitudinal and vertical turbulence intensities at the same cross-section;(4)the variation in amplitude of Reynolds stress increased with an increase in orifice number;and(5)the cavitation clouds in the flow fields became denser with the increase in orifice number,and the clouds generated by the staggered layout of orifices were greater in number than those generated by the checkerboard-type one for the same orifice number.The experimental results can be used to analyze the mechanism of killing pathogenic microorganisms through hydrodynamic cavitation.展开更多
The existence of the heaving plates can improve the heaving motion performance of an offshore structure significantly by providing both extra added mass and damping.In the current research,numerical investigation is c...The existence of the heaving plates can improve the heaving motion performance of an offshore structure significantly by providing both extra added mass and damping.In the current research,numerical investigation is carried out on the hydrodynamic characteristics of both isolated square heaving plate and double square heaving plates with opening by an immersed boundary-lattice Boltzmann method.The effects on hydrodynamic performance of plates due to Keulegan-Carpenter(KC)number,frequency number,opening ratio,opening distribution and spacing of plates are examined.It is found that the heaving plates with optimized opening ratio can provide additional damping compared with the plates without opening.Better hydrodynamic characteristics of double plates can be obtained with the increase of plate spacing.展开更多
The multi-orifice plate gas sparger, mainly composed of a multi-orifice plate and a gas chamber, is one of the most common sparger facilities.The aeration performance of multi-orifice plate has a close relation with t...The multi-orifice plate gas sparger, mainly composed of a multi-orifice plate and a gas chamber, is one of the most common sparger facilities.The aeration performance of multi-orifice plate has a close relation with the multiorifice plate configuration.In addition, the weeping phenomenon has a considerable influence on the gas chamber condition which affects the bubble detachment volume directly.This paper conducts a set of visual experiments to study the influence of multi-orifice configuration and gas chamber condition on the aeration performance of gas sparger.For multi-orifice plate, an improved theoretical model is proposed which considers the wave effect of the previous bubbles generated from adjacent orifices and the variance of the number of active bubbling orifice.A parameter is proposed to evaluate the aeration performance in order to overcome the difficulty caused by the randomness of bubble formation process.The experimental results suggest that the gas chamber filled with water is in favor of large bubble formation.The influence of the pitch of orifice on aeration performance can only be observed in high-restricted case.According to the theoretical model and experimental results, the influences of gas flow rate and the number of open orifices on the aeration performance are analyzed and a design criterion for the number of open orifice is proposed.展开更多
Weeping is an adverse phenomenon which results in higher pressure drop and poorer aeration performance.Visual experiments have been conducted to study the mechanism by which weeping impairs the work performance of mul...Weeping is an adverse phenomenon which results in higher pressure drop and poorer aeration performance.Visual experiments have been conducted to study the mechanism by which weeping impairs the work performance of multi-orifice plate.A theoretical model is improved to analyze the weeping phenomenon of multiorifice plate based on potential flow theory.The relations of different bubbling conditions and weeping rate are analyzed.Weeping condition and average weeping rate have relation with the driven pressure differential and dynamic variation of gas chamber pressure.In addition,a set of experiments are designed to study the influence of various factors on weeping rate.The bubble coalescence during bubble formation is a fatal factor determining weeping rate,so the relation between weeping rate and gas flow rate is concerned with the pitch of orifices and orifice diameter.There is a critical plate thickness which is in favor of weeping.展开更多
The vibration suppression of the finite plate with square steel beams is studied using traveling wave method. The finite plate with square beams is modeled as the coupling systems between the plate flexural motion and...The vibration suppression of the finite plate with square steel beams is studied using traveling wave method. The finite plate with square beams is modeled as the coupling systems between the plate flexural motion and the flexural and torsional motions for the square beams. The vibration response at any position of the coupling structure can be obtained by wave method. Numerical results show that comparing to finite element method (FEM), not only the low frequency but also the medium-high frequency vibration response of the finite plate with square beam can be effectively calculated by wave method. The suppression effect can be increased as the square beam is located at one-third of the length of plate or increasing the height of the beam. The study provides reference for arranged square beams applying to vibration suppression of ship and train structures.展开更多
The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specim...The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specimens, moment-vertical displacement curves, moment-deformation of the chord, and strain strength distribution curves were presented. The effect of β and plate reinforcement types on in-plane flexural property of SHS X-joints was studied. Results show that punching shear of chord face disappears, brace material fracture appears and concave and convex deformation of chord decrease when either collar plates or doubler plates were welded on chord face. Moment-vertical displacement curves of all specimens have obvious elastic, elastic-plastic and plastic stages. As β increases, the in-plane flexural ultimate capacity and initial stiffness of joints of the same plate reinforcement type increase, but ductility of joints decreases. With the same β, the in-plane flexural initial stiffness and ultimate capacity of doubler plate reinforced joints, collar plate reinforced joints, and unreinforced joints decrease progressively. Thickness of reinforcement plate has no obvious effect on in-plane flexural initial stiffness and ultimate capacity of joints. As thickness of reinforcement plate increases, the ductility of reinforced X-joints decreases. The concave and convex deformation of every specimen has good symmetry;as β increases, the yield and ultimate deformation of chord decrease.展开更多
A simple and efficient coupled displacement field method is developed to study the large amplitude free vibration behavior of the moderately thick square plates.A single term trigonometric admissible displacement fiel...A simple and efficient coupled displacement field method is developed to study the large amplitude free vibration behavior of the moderately thick square plates.A single term trigonometric admissible displacement field is assumed for one of the variables,say,the total rotations(in both X,Y directions).Making use of the coupling equation,the spatial variation for the lateral displacement field is derived in terms of the total rotations.The coupled displacement field method makes the energy formulation to contain half the number of unknown independent coefficients,in the case of a square plate,contrary to the conventional RayleighRitz method.The lesser number of undetermined coefficients significantly simplifies the vibration problem.The expressions for the linear and nonlinear fundamental frequency parameters for the all edges simply supported moderately thick square plates are derived.The numerical results obtained from the present formulation are in very good agreement with those obtained from the existing literature.展开更多
In this paper we have made a numerical study on the control of vortex shedding and drag reduction of a cylinder by attaching thin splitter plates. The wake structure of the cylinder of square cross-section with attach...In this paper we have made a numerical study on the control of vortex shedding and drag reduction of a cylinder by attaching thin splitter plates. The wake structure of the cylinder of square cross-section with attached splitter plates is analyzed for a range of Reynolds number, based on the incident stream and height of the cylinder, in the laminar range. The Navier-Stokes equations governing the flow are solved by the control volume method over a staggered grid arrangement. We have used the semi-implicit method for pressure-linked equation (SIMPLE) algorithm for computation. Our results show that the presence of a splitter plate upstream of the cylinder reduces the drag, but it has a small impact on the vortex shedding frequency when the plate length is beyond 1.5 time the height of the cylinder. The presence of a downstream splitter plate dampens the vortex shedding frequency. The entrainment of fluid into the inner side of the separated shear layers is obstructed by the downstream splitter plate. Our results suggest that by attaching in-line splitter plates both upstream and downstream of the cylinder, the vortex shedding can be suppressed, as well as a reduction in drag be obtained. We made a parametric study to determine the optimal length of these splitter plates so as to achieve low drag and low vortex shedding frequency.展开更多
In this study, the unsteady behavior of necklace vortices formed in front of a square flat plate was experimentally investigated by flow visualization and PIV analysis by using a water channel. As a result, the neckla...In this study, the unsteady behavior of necklace vortices formed in front of a square flat plate was experimentally investigated by flow visualization and PIV analysis by using a water channel. As a result, the necklace vortices started to oscillate when the Reynolds number increased beyond approximately 2000. Then, an amalgamation behavior of the necklace vortices took place when the Reynolds number increased beyond approximately 2650. Furthermore, in the same Reynolds number range, a breakaway behavior appeared when the relative height of the square plate was beyond approximately h/δ = 4.0. The features of the necklace vortices behaviors in the oscillation, amalgamation and breakaway states were explained by observing the time-series image of path lines and by analyzing the frequency of velocity fluctuation.展开更多
A numerical investigation was performed on the reduction of the fluid forces acting on the square cylinder in the laminar flow regime with a perforated plate. The effects of geometric parameters such as the distance b...A numerical investigation was performed on the reduction of the fluid forces acting on the square cylinder in the laminar flow regime with a perforated plate. The effects of geometric parameters such as the distance between the square cylinder and the perforated plate on the wake of the square cylinder were discussed. Furthermore, the flow characteristics such as the drag coefficient, lift coefficient, Strouhal number and flow pattern were obtained. It can be concluded that the drag force of the square cylinder reduces to some extent due to the addition of the perforated plate. The flow structure varies when the perforated plate is located behind the square cylinder. Moreover, the recirculation zone augments with the increase of L/D, and the vortex trace on the upper and lower surface of the square cylinder moves gradually backwards until a stable recirculation zone formed between the square cylinder and the perforated plate.展开更多
The deformation and failure mechanism of cylindrical shells and square plate with pre-formed holes under blast loading were investigated numerically by employing the Ansys 17.0 and Ls-Dyna 971.To calibrate the numeric...The deformation and failure mechanism of cylindrical shells and square plate with pre-formed holes under blast loading were investigated numerically by employing the Ansys 17.0 and Ls-Dyna 971.To calibrate the numerical model,the experiments of square plates with pre-formed circle holes were modeled and the numerical results have a good agreement with the experiment data.The calibrated numerical model was used to study the deformation and failure mechanism of cylindrical shells with pre-formed circle holes subjected to blast loading.The structure response and stress field changing process has been divided into four specific stages and the deformation mechanism has been discussed systematically.The local and global deformation curves,degree of damage,change of stress status and failure modes of cylindrical shell and square plate with pre-formed circular holes are obtained,compared and analyzed,it can be concluded as:(1)The transition of tensile stress fields is due to the geometrical characteristic of pre-formed holes and cylindrical shell with arch configuration;(2)The existence of preformed holes not only lead to the increasing of stress concentration around the holes,but also release the stress concentration during whole response process;(3)There are three and two kinds of failure modes for square plate and cylindrical shell with pre-formed holes,respectively.and the standoff distance has a key influence on the forming location of the crack initiating point and the locus of crack propagation;(4)The square plate with pre-formed holes has a better performance than cylindrical shell on blast-resistant capability at a smaller standoff distance,while the influence of pre-formed holes on the reduction of blast-resistant capability of square plate is bigger than that of cylindrical shell.展开更多
A new efficient meshless method based on the element-free Galerkin method is proposed to analyze the static deformation of thin and thick plate structures in this paper. Using the new 3D shell-like kinematics in analo...A new efficient meshless method based on the element-free Galerkin method is proposed to analyze the static deformation of thin and thick plate structures in this paper. Using the new 3D shell-like kinematics in analogy to the solid-shell concept of the finite element method, discretization is carried out by the nodes located on the upper and lower surfaces of the structures. The approximation of all unknown field variables is carried out by using the moving least squares (MLS) approximation scheme in the in-plane directions, while the linear interpolation is applied through the thickness direction. Thus, different boundary conditions are defined only using displacements and penalty method is used to enforce the essential boundary conditions. The constrained Galerkin weak form, which incorporates only dis- placement degrees of freedom (d.o.f.s), is derived. A modified 3D constitutive relationship is adopted in order to avoid or eliminate some self-locking effects. The numeric efficiency of the proposed meshless formulation is illustrated by the numeric examples.展开更多
Vehicle license plate (VLP) character segmentation is an important part of the vehicle license plate recognition system (VLPRS).This paper proposes a least square method (LSM) to treat horizontal tilt and vertical til...Vehicle license plate (VLP) character segmentation is an important part of the vehicle license plate recognition system (VLPRS).This paper proposes a least square method (LSM) to treat horizontal tilt and vertical tilt in VLP images.Auxiliary lines are added into the image (or the tilt-corrected image) to make the separated parts of each Chinese character to be an interconnected region.The noise regions will be eliminated after two fusing images are merged according to the minimum principle of gray values. Then,the characters are segmented by projection method (PM) and the final character images are obtained.The experimental results show that this method features fast processing and good performance in segmentation.展开更多
The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution varia...The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution variables, and employed a local symmetric weak form. The present method was a truly meshless one as it did not need a finite element or boundary element mesh, either for purpose of interpolation of the solution, or for the integration of the energy. All integrals could be easily evaluated over regularly shaped domains (in general, spheres in three_dimensional problems) and their boundaries. The essential boundary conditions were enforced by the penalty method. Several numerical examples were presented to illustrate the implementation and performance of the present method. The numerical examples presented show that high accuracy can be achieved for arbitrary grid geometries for clamped and simply_supported edge conditions. No post processing procedure is required to computer the strain and stress, since the original solution from the present method, using the moving least squares approximation, is already smooth enough.展开更多
3D and 2D closed form plate models are here applied to static analysis of simply supported square isotropic plates. 2D theories are hierarchically classified on the basis of the accuracy of the displacements and stres...3D and 2D closed form plate models are here applied to static analysis of simply supported square isotropic plates. 2D theories are hierarchically classified on the basis of the accuracy of the displacements and stresses obtained by comparison to the 3D exact results that could be assumed by the reader as benchmark for further analyses. Attention is mainly paid on localized loading conditions, that is, piecewise constant load. Also bi-sinusoidal and uniformly distributed loadings are taken into account. All of those configurations are considered in order to investigate the behavior of the 2D models in the case of continu- ous/uncontinuous, centric or off-centric loading conditions. The ratio between the side length a and the plate thickness h has been assumed as analysis parameter. Higher order 2D models yield accurate results for any considered load condition in the case of moderately thick plates, a/h=10. In the case of thick plates, a/h=5, and continuous/uncontinuous centric loading conditions high accuracy is also obtained. For the considered off-centric load condition and thick plates good results are provided for some output quantities. A better solution could be achieved by simply increasing the polynomial approximation order of the axiomatic 2D displacement field.展开更多
Two problems of scattering of surface water waves involving a semi-infinite elastic plate and a pair of semi-infinite elastic plates,separated by a gap of finite width,floating horizontally on water of finite depth,ar...Two problems of scattering of surface water waves involving a semi-infinite elastic plate and a pair of semi-infinite elastic plates,separated by a gap of finite width,floating horizontally on water of finite depth,are investigated in the present work for a two-dimensional time-harmonic case.Within the frame of linear water wave theory,the solutions of the two boundary value problems under consideration have been represented in the forms of eigenfunction expansions.Approximate values of the reflection and transmission coefficients are obtained by solving an over-determined system of linear algebraic equations in each problem.In both the problems,the method of least squares as well as the singular value decomposition have been employed and tables of numerical values of the reflection and transmission coefficients are presented for specific choices of the parameters for modelling the elastic plates.Our main aim is to check the energy balance relation in each problem which plays a very important role in the present approach of solutions of mixed boundary value problems involving Laplace equations.The main advantage of the present approach of solutions is that the results for the values of reflection and transmission coefficients obtained by using both the methods are found to satisfy the energy-balance relations associated with the respective scattering problems under consideration.The absolute values of the reflection and transmission coefficients are presented graphically against different values of the wave numbers.展开更多
Mathematical model of cross type multi-stream plate-fin heat exchanger is established.Meanwhile,mean square error of accumulative heat load is normalized by dimensionless,and the equations of temperature-difference un...Mathematical model of cross type multi-stream plate-fin heat exchanger is established.Meanwhile,mean square error of accumulative heat load is normalized by dimensionless,and the equations of temperature-difference uniformity factor are improved.Evaluation factors above and performance of heat exchanger are compared and analyzed by taking aircraft three-stream condenser as an example.The results demonstrate that the mean square error of accumulative heat load is common result of total heat load and excess heat load between passages.So it can be influenced by passage arrangement,flow inlet parameters as well as flow patterns.Dimensionless parameter of mean square error of accumulative heat load can reflect the influence of passage arrangement to heat exchange performance and will not change dramatically with the variation of flow inlet parameters and flow patterns.Temperature-difference uniformity factor is influenced by passage arrangement and flow patterns.It remains basically unchanged under a certain range of flow inlet parameters.展开更多
文摘Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbitrary boundary conditions on one edge and simply supported on other edge. The rectangular laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. This study presents the elastic analysis of laminated composite plates subjected to sinusoidal mechanical loading under arbitrary boundary conditions. Least square finite element solutions for displacements and stresses are investigated using a mathematical model, called a state-space model, which allows us to simultaneously solve for these field variables in the composite structure’s domain and ensure that continuity conditions are satisfied at layer interfaces. The governing equations are derived from this model using a numerical technique called the least-squares finite element method (LSFEM). These LSFEMs seek to minimize the squares of the governing equations and the associated side conditions residuals over the computational domain. The model is comprised of layerwise variables such as displacements, out-of-plane stresses, and in- plane strains, treated as independent variables. Numerical results are presented to demonstrate the response of the laminated composite plates under various arbitrary boundary conditions using LSFEM and compared with the 3D elasticity solution available in the literature.
基金Supported by the Fundamental Research Funds for the Central Universities(HEUCFP201855)
文摘Bubble coalescence reduces specific area and weakens the work performance of bubble column. The bubble coalescence near gas sparger which is caused mainly by bubble growing is different from the ones occurring in major liquid. Bubble coalescence efficiency near gas sparger is influenced by many factors including sparger configuration, gas flow rate, bubble deformation, solution composition, etc. This work has conducted a set of visual experiments to study the coalescence characteristics near multi-orifice plate. The experiment parameters cover a wide range of conditions including large scope of gas flow rate,different kinds of solution and orifice configurations. The experimental results suggest that coalescence time is applicable to reflect the influence of the pitch of orifices and gas flow rate on bubble coalescence efficiency. As the number of orifices increases, bubble coalescence efficiency is reduced by the disturbance from the bubbles at adjacent orifices. A hindering coefficient is used to consider the hindering effect of additives on bubble coalescence efficiency. Finally a new calculation expression is established to predict bubble coalescence efficiency near multi-orifice plate whose fundamental form is based on the logistic curve of binary response. The calculated values that refer to this calculation expression are well consistent with the experimental results.
基金supported by the National Natural Science Foundation of China(Grant No.51479177).
文摘Based on a self-developed hydrodynamic cavitation device with different geometric parameters for circular multi-orifice plates,turbulence characteristics of cavitating flow behind multi-orifice plates,including the effects of orifice number and orifice layout on longitudinal velocity,turbulence intensity,and Reynolds stress,were measured with the particle image velocimetry(PIV)technique.Flow regimes of the cavitating flow were also observed with high-speed photography.The experimental results showed the following:(1)high-velocity multiple cavitating jets occurred behind the multi-orifice plates,and the cavitating flow fields were characterized by topological structures;(2)the longitudinal velocity at each cross-section exhibited a sawtooth-like distribution close to the multi-orifice plate,and each sawtooth indicated one jet issuing from one orifice;(3)there were similar magnitudes and forms for the longitudinal and vertical turbulence intensities at the same cross-section;(4)the variation in amplitude of Reynolds stress increased with an increase in orifice number;and(5)the cavitation clouds in the flow fields became denser with the increase in orifice number,and the clouds generated by the staggered layout of orifices were greater in number than those generated by the checkerboard-type one for the same orifice number.The experimental results can be used to analyze the mechanism of killing pathogenic microorganisms through hydrodynamic cavitation.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51490672 and 51879039)
文摘The existence of the heaving plates can improve the heaving motion performance of an offshore structure significantly by providing both extra added mass and damping.In the current research,numerical investigation is carried out on the hydrodynamic characteristics of both isolated square heaving plate and double square heaving plates with opening by an immersed boundary-lattice Boltzmann method.The effects on hydrodynamic performance of plates due to Keulegan-Carpenter(KC)number,frequency number,opening ratio,opening distribution and spacing of plates are examined.It is found that the heaving plates with optimized opening ratio can provide additional damping compared with the plates without opening.Better hydrodynamic characteristics of double plates can be obtained with the increase of plate spacing.
基金Supported by the Fundamental Research Funds for the Central Universities(HEUCFM181203)
文摘The multi-orifice plate gas sparger, mainly composed of a multi-orifice plate and a gas chamber, is one of the most common sparger facilities.The aeration performance of multi-orifice plate has a close relation with the multiorifice plate configuration.In addition, the weeping phenomenon has a considerable influence on the gas chamber condition which affects the bubble detachment volume directly.This paper conducts a set of visual experiments to study the influence of multi-orifice configuration and gas chamber condition on the aeration performance of gas sparger.For multi-orifice plate, an improved theoretical model is proposed which considers the wave effect of the previous bubbles generated from adjacent orifices and the variance of the number of active bubbling orifice.A parameter is proposed to evaluate the aeration performance in order to overcome the difficulty caused by the randomness of bubble formation process.The experimental results suggest that the gas chamber filled with water is in favor of large bubble formation.The influence of the pitch of orifice on aeration performance can only be observed in high-restricted case.According to the theoretical model and experimental results, the influences of gas flow rate and the number of open orifices on the aeration performance are analyzed and a design criterion for the number of open orifice is proposed.
基金Fundamental Research Funds for the Central Universities(HEUCFP201855)。
文摘Weeping is an adverse phenomenon which results in higher pressure drop and poorer aeration performance.Visual experiments have been conducted to study the mechanism by which weeping impairs the work performance of multi-orifice plate.A theoretical model is improved to analyze the weeping phenomenon of multiorifice plate based on potential flow theory.The relations of different bubbling conditions and weeping rate are analyzed.Weeping condition and average weeping rate have relation with the driven pressure differential and dynamic variation of gas chamber pressure.In addition,a set of experiments are designed to study the influence of various factors on weeping rate.The bubble coalescence during bubble formation is a fatal factor determining weeping rate,so the relation between weeping rate and gas flow rate is concerned with the pitch of orifices and orifice diameter.There is a critical plate thickness which is in favor of weeping.
基金National Natural Science Foundation of China ( No. 10972065) Natural Science Foundation of Heilongjiang Province of China( No. ZD200905)
文摘The vibration suppression of the finite plate with square steel beams is studied using traveling wave method. The finite plate with square beams is modeled as the coupling systems between the plate flexural motion and the flexural and torsional motions for the square beams. The vibration response at any position of the coupling structure can be obtained by wave method. Numerical results show that comparing to finite element method (FEM), not only the low frequency but also the medium-high frequency vibration response of the finite plate with square beam can be effectively calculated by wave method. The suppression effect can be increased as the square beam is located at one-third of the length of plate or increasing the height of the beam. The study provides reference for arranged square beams applying to vibration suppression of ship and train structures.
基金Projects(51278209 and 51478047) supported by the National Natural Science Foundation of ChinaProject(ZQN-PY110) supported by Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University,China+1 种基金Project(2014FJ-NCET-ZR03) supported by Program for New Century Excellent Talents in Fujian Province University,ChinaProject(JA13005) supported by Incubation Programme for Excellent Young Science and Technology Talents in Fujian Province Universities,China
文摘The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specimens, moment-vertical displacement curves, moment-deformation of the chord, and strain strength distribution curves were presented. The effect of β and plate reinforcement types on in-plane flexural property of SHS X-joints was studied. Results show that punching shear of chord face disappears, brace material fracture appears and concave and convex deformation of chord decrease when either collar plates or doubler plates were welded on chord face. Moment-vertical displacement curves of all specimens have obvious elastic, elastic-plastic and plastic stages. As β increases, the in-plane flexural ultimate capacity and initial stiffness of joints of the same plate reinforcement type increase, but ductility of joints decreases. With the same β, the in-plane flexural initial stiffness and ultimate capacity of doubler plate reinforced joints, collar plate reinforced joints, and unreinforced joints decrease progressively. Thickness of reinforcement plate has no obvious effect on in-plane flexural initial stiffness and ultimate capacity of joints. As thickness of reinforcement plate increases, the ductility of reinforced X-joints decreases. The concave and convex deformation of every specimen has good symmetry;as β increases, the yield and ultimate deformation of chord decrease.
基金JNTU-Kakinada for sponsoring the necessary economical support for presenting the paper under TEQIP2the support given by Mallareddy college of engineering and Indian national academy of engineering
文摘A simple and efficient coupled displacement field method is developed to study the large amplitude free vibration behavior of the moderately thick square plates.A single term trigonometric admissible displacement field is assumed for one of the variables,say,the total rotations(in both X,Y directions).Making use of the coupling equation,the spatial variation for the lateral displacement field is derived in terms of the total rotations.The coupled displacement field method makes the energy formulation to contain half the number of unknown independent coefficients,in the case of a square plate,contrary to the conventional RayleighRitz method.The lesser number of undetermined coefficients significantly simplifies the vibration problem.The expressions for the linear and nonlinear fundamental frequency parameters for the all edges simply supported moderately thick square plates are derived.The numerical results obtained from the present formulation are in very good agreement with those obtained from the existing literature.
文摘In this paper we have made a numerical study on the control of vortex shedding and drag reduction of a cylinder by attaching thin splitter plates. The wake structure of the cylinder of square cross-section with attached splitter plates is analyzed for a range of Reynolds number, based on the incident stream and height of the cylinder, in the laminar range. The Navier-Stokes equations governing the flow are solved by the control volume method over a staggered grid arrangement. We have used the semi-implicit method for pressure-linked equation (SIMPLE) algorithm for computation. Our results show that the presence of a splitter plate upstream of the cylinder reduces the drag, but it has a small impact on the vortex shedding frequency when the plate length is beyond 1.5 time the height of the cylinder. The presence of a downstream splitter plate dampens the vortex shedding frequency. The entrainment of fluid into the inner side of the separated shear layers is obstructed by the downstream splitter plate. Our results suggest that by attaching in-line splitter plates both upstream and downstream of the cylinder, the vortex shedding can be suppressed, as well as a reduction in drag be obtained. We made a parametric study to determine the optimal length of these splitter plates so as to achieve low drag and low vortex shedding frequency.
文摘In this study, the unsteady behavior of necklace vortices formed in front of a square flat plate was experimentally investigated by flow visualization and PIV analysis by using a water channel. As a result, the necklace vortices started to oscillate when the Reynolds number increased beyond approximately 2000. Then, an amalgamation behavior of the necklace vortices took place when the Reynolds number increased beyond approximately 2650. Furthermore, in the same Reynolds number range, a breakaway behavior appeared when the relative height of the square plate was beyond approximately h/δ = 4.0. The features of the necklace vortices behaviors in the oscillation, amalgamation and breakaway states were explained by observing the time-series image of path lines and by analyzing the frequency of velocity fluctuation.
文摘A numerical investigation was performed on the reduction of the fluid forces acting on the square cylinder in the laminar flow regime with a perforated plate. The effects of geometric parameters such as the distance between the square cylinder and the perforated plate on the wake of the square cylinder were discussed. Furthermore, the flow characteristics such as the drag coefficient, lift coefficient, Strouhal number and flow pattern were obtained. It can be concluded that the drag force of the square cylinder reduces to some extent due to the addition of the perforated plate. The flow structure varies when the perforated plate is located behind the square cylinder. Moreover, the recirculation zone augments with the increase of L/D, and the vortex trace on the upper and lower surface of the square cylinder moves gradually backwards until a stable recirculation zone formed between the square cylinder and the perforated plate.
基金The reported research is financially supported by The National Natural Science Foundation of China under Grant No.11902310 and No.11802292.
文摘The deformation and failure mechanism of cylindrical shells and square plate with pre-formed holes under blast loading were investigated numerically by employing the Ansys 17.0 and Ls-Dyna 971.To calibrate the numerical model,the experiments of square plates with pre-formed circle holes were modeled and the numerical results have a good agreement with the experiment data.The calibrated numerical model was used to study the deformation and failure mechanism of cylindrical shells with pre-formed circle holes subjected to blast loading.The structure response and stress field changing process has been divided into four specific stages and the deformation mechanism has been discussed systematically.The local and global deformation curves,degree of damage,change of stress status and failure modes of cylindrical shell and square plate with pre-formed circular holes are obtained,compared and analyzed,it can be concluded as:(1)The transition of tensile stress fields is due to the geometrical characteristic of pre-formed holes and cylindrical shell with arch configuration;(2)The existence of preformed holes not only lead to the increasing of stress concentration around the holes,but also release the stress concentration during whole response process;(3)There are three and two kinds of failure modes for square plate and cylindrical shell with pre-formed holes,respectively.and the standoff distance has a key influence on the forming location of the crack initiating point and the locus of crack propagation;(4)The square plate with pre-formed holes has a better performance than cylindrical shell on blast-resistant capability at a smaller standoff distance,while the influence of pre-formed holes on the reduction of blast-resistant capability of square plate is bigger than that of cylindrical shell.
基金supported by the National Natural Science Foundation of China (11172192)the College Postgraduate Research and Innovation Project of Jiangsu province (CXZZ12 0803)
文摘A new efficient meshless method based on the element-free Galerkin method is proposed to analyze the static deformation of thin and thick plate structures in this paper. Using the new 3D shell-like kinematics in analogy to the solid-shell concept of the finite element method, discretization is carried out by the nodes located on the upper and lower surfaces of the structures. The approximation of all unknown field variables is carried out by using the moving least squares (MLS) approximation scheme in the in-plane directions, while the linear interpolation is applied through the thickness direction. Thus, different boundary conditions are defined only using displacements and penalty method is used to enforce the essential boundary conditions. The constrained Galerkin weak form, which incorporates only dis- placement degrees of freedom (d.o.f.s), is derived. A modified 3D constitutive relationship is adopted in order to avoid or eliminate some self-locking effects. The numeric efficiency of the proposed meshless formulation is illustrated by the numeric examples.
基金Scientific Research Fund of Hunan Province,PRC (No.07JJ6141)Scientific Research Fund of Hunan Provincial Education Department,PRC (No.05C720).
文摘Vehicle license plate (VLP) character segmentation is an important part of the vehicle license plate recognition system (VLPRS).This paper proposes a least square method (LSM) to treat horizontal tilt and vertical tilt in VLP images.Auxiliary lines are added into the image (or the tilt-corrected image) to make the separated parts of each Chinese character to be an interconnected region.The noise regions will be eliminated after two fusing images are merged according to the minimum principle of gray values. Then,the characters are segmented by projection method (PM) and the final character images are obtained.The experimental results show that this method features fast processing and good performance in segmentation.
文摘The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution variables, and employed a local symmetric weak form. The present method was a truly meshless one as it did not need a finite element or boundary element mesh, either for purpose of interpolation of the solution, or for the integration of the energy. All integrals could be easily evaluated over regularly shaped domains (in general, spheres in three_dimensional problems) and their boundaries. The essential boundary conditions were enforced by the penalty method. Several numerical examples were presented to illustrate the implementation and performance of the present method. The numerical examples presented show that high accuracy can be achieved for arbitrary grid geometries for clamped and simply_supported edge conditions. No post processing procedure is required to computer the strain and stress, since the original solution from the present method, using the moving least squares approximation, is already smooth enough.
文摘3D and 2D closed form plate models are here applied to static analysis of simply supported square isotropic plates. 2D theories are hierarchically classified on the basis of the accuracy of the displacements and stresses obtained by comparison to the 3D exact results that could be assumed by the reader as benchmark for further analyses. Attention is mainly paid on localized loading conditions, that is, piecewise constant load. Also bi-sinusoidal and uniformly distributed loadings are taken into account. All of those configurations are considered in order to investigate the behavior of the 2D models in the case of continu- ous/uncontinuous, centric or off-centric loading conditions. The ratio between the side length a and the plate thickness h has been assumed as analysis parameter. Higher order 2D models yield accurate results for any considered load condition in the case of moderately thick plates, a/h=10. In the case of thick plates, a/h=5, and continuous/uncontinuous centric loading conditions high accuracy is also obtained. For the considered off-centric load condition and thick plates good results are provided for some output quantities. A better solution could be achieved by simply increasing the polynomial approximation order of the axiomatic 2D displacement field.
基金NASI (National Academy of Sciences, India) for providing financial support
文摘Two problems of scattering of surface water waves involving a semi-infinite elastic plate and a pair of semi-infinite elastic plates,separated by a gap of finite width,floating horizontally on water of finite depth,are investigated in the present work for a two-dimensional time-harmonic case.Within the frame of linear water wave theory,the solutions of the two boundary value problems under consideration have been represented in the forms of eigenfunction expansions.Approximate values of the reflection and transmission coefficients are obtained by solving an over-determined system of linear algebraic equations in each problem.In both the problems,the method of least squares as well as the singular value decomposition have been employed and tables of numerical values of the reflection and transmission coefficients are presented for specific choices of the parameters for modelling the elastic plates.Our main aim is to check the energy balance relation in each problem which plays a very important role in the present approach of solutions of mixed boundary value problems involving Laplace equations.The main advantage of the present approach of solutions is that the results for the values of reflection and transmission coefficients obtained by using both the methods are found to satisfy the energy-balance relations associated with the respective scattering problems under consideration.The absolute values of the reflection and transmission coefficients are presented graphically against different values of the wave numbers.
文摘Mathematical model of cross type multi-stream plate-fin heat exchanger is established.Meanwhile,mean square error of accumulative heat load is normalized by dimensionless,and the equations of temperature-difference uniformity factor are improved.Evaluation factors above and performance of heat exchanger are compared and analyzed by taking aircraft three-stream condenser as an example.The results demonstrate that the mean square error of accumulative heat load is common result of total heat load and excess heat load between passages.So it can be influenced by passage arrangement,flow inlet parameters as well as flow patterns.Dimensionless parameter of mean square error of accumulative heat load can reflect the influence of passage arrangement to heat exchange performance and will not change dramatically with the variation of flow inlet parameters and flow patterns.Temperature-difference uniformity factor is influenced by passage arrangement and flow patterns.It remains basically unchanged under a certain range of flow inlet parameters.