In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering comp...In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.展开更多
工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小...工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小迭代修复和改进WGAN混合模型的时序数据修复方法.首先,在预处理阶段,保留异常数据,进行信息标注等处理,从而充分挖掘异常值与真实值之间的特征约束.其次,在噪声模块提出了近邻参数裁剪规则,用于修正最小迭代修复公式生成的噪声向量.将其传递至模拟分布模块的生成器中,同时设计了一个动态时间注意力网络层,用于提取时序特征权重并与门控循环单元串联组合捕捉不同步长的特征依赖,并引入递归多步预测原理共同提升模型的表达能力;在判别器中设计了Abnormal and Truth奖励机制和Weighted Mean Square Error损失函数共同反向优化生成器修复数据的细节和质量.最后,在公开数据集和真实数据集上的实验结果表明,该方法的修复准确度与模型稳定性显著优于现有方法.展开更多
An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coin...An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coincides with the physical characteristics of the fatigue life scatter. Two examples demonstrate the method. It is shown that the method has better accuracy and reasonableness compared with the usual least square method.展开更多
Determine the location of a target has gained considerable interest over the past few years. The Received Signal Strength(RSS) measurements and Differential RSS(DRSS) measurements can be converted to distance or dista...Determine the location of a target has gained considerable interest over the past few years. The Received Signal Strength(RSS) measurements and Differential RSS(DRSS) measurements can be converted to distance or distance ratio estimates for constructing a set of linear equations. Based on these linear equations, a constrained weighted least Squares(CWLS) algorithm for target localization is derived. In addition, an iterative technique based on Newton's method is utilized to give a solution. The covariance and bias of the CWLS algorithm is derived using perturbation analysis. Simulation shows that the proposed estimator achieves better performance than existing algorithms with reasonable complexity.展开更多
Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coeff...Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coefficients and measurement noise is established, is proposed by giving attention to the correlation of measurement noise. Then a simplified weighted fusion algorithm is deduced on the assumption that measurement noise is uncorrelated. In addition, an algorithm, which can adjust the weight coefficients in the simplified algorithm by making estimations of measurement noise from measurements, is presented. It is proved by emulation and experiment that the precision performance of the multi-sensor system based on these algorithms is better than that of the multi-sensor system based on other algorithms.展开更多
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to...In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to-controller path and controller-to-actuator path. A weighted least squares(WLS) method is designed to estimate the parameters of plant, which could overcome the data uncertainty problem caused by delays and dropout. This WLS method is proved to be consistent and has a good asymptotic property. Simulation examples are given to validate the results.展开更多
A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position erro...A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position errors. Firstly, the unknown matrix perturbation information is utilized to form the WRTLS problem. Then, the corresponding constrained optimization problem is transformed into an unconstrained one, which is a generalized Rayleigh quotient minimization problem. Thus, the solution can be got through the generalized eigenvalue decomposition and requires no initial state guess process. Simulation results indicate that the proposed algorithm can approach the Cramer-Rao lower bound (CRLB), and the localization solution is asymptotically unbiased.展开更多
A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems...A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.展开更多
For the accurate extraction of cavity decay time, a selection of data points is supplemented to the weighted least square method. We derive the expected precision, accuracy and computation cost of this improved method...For the accurate extraction of cavity decay time, a selection of data points is supplemented to the weighted least square method. We derive the expected precision, accuracy and computation cost of this improved method, and examine these performances by simulation. By comparing this method with the nonlinear least square fitting (NLSF) method and the linear regression of the sum (LRS) method in derivations and simulations, we find that this method can achieve the same or even better precision, comparable accuracy, and lower computation cost. We test this method by experimental decay signals. The results are in agreement with the ones obtained from the nonlinear least square fitting method.展开更多
In the paper, a result of Walsh and Sharma on least square convergence of Lagrange interpolation polynomials based on the n-th roots of unity is extended to Lagrange interpolation on the sets obtained by projecting ve...In the paper, a result of Walsh and Sharma on least square convergence of Lagrange interpolation polynomials based on the n-th roots of unity is extended to Lagrange interpolation on the sets obtained by projecting vertically the zeros of (1-x)2=P (a,β) n(x),a>0,β>0,(1-x)P(a,β) n(x),a>0,β>-1,(1+x)P P(a,β) n(x),a>-1,β0 and P(a,β) n(x),a>-1,β>-1, respectively, onto the unit circle, where P(a,β) n(x),a>-1,β>-1, stands for the n-th Jacobi polynomial. Moreover, a result of Saff and Walsh is also extended.展开更多
In this paper,a sinusoidal signal frequency estimation algorithm is proposed by weighted least square method.Based on the idea of Provencher,three biggest Fourier coefficients in the maximum periodogram are considered...In this paper,a sinusoidal signal frequency estimation algorithm is proposed by weighted least square method.Based on the idea of Provencher,three biggest Fourier coefficients in the maximum periodogram are considered,the Fourier coefficients can be written as three equations about the amplitude,phase,and frequency,and the frequency is estimated by solving equations.Because of the error of measurement,weighted least square method is used to solve the frequency equation and get the signal frequency.It is shown that the proposed estimator can approach the Cramer-Rao Bound(CRB)with a low Signal-to-Noise Ratio(SNR)threshold and has a higher accuracy.展开更多
The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimat...The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base is presented in this paper.The algorithm transforms the initial alignment into the initial attitude determination problem by using infinite vector observations to remove the angular motions,the SINS alignment is heuristically established as an optimiza-tion problem of finding the minimum eigenvector.In order to further improve the alignment precision,an adaptive recursive weighted least squares(ARWLS)curve fitting algorithm is used to fit the translational motion interference-contaminated reference vectors according to their time domain characteristics.Simulation studies and experimental results favorably demonstrate its rapidness,accuracy and robustness.展开更多
As the scale of software systems expands,maintaining their stable operation has become an extraordinary challenge.System logs are semi-structured text generated by the recording function in the source code and have im...As the scale of software systems expands,maintaining their stable operation has become an extraordinary challenge.System logs are semi-structured text generated by the recording function in the source code and have important research significance in software service anomaly detection.Existing log anomaly detection methods mainly focus on the statistical characteristics of logs,making it difficult to distinguish the semantic differences between normal and abnormal logs,and performing poorly on real-world industrial log data.In this paper,we propose an unsupervised framework for log anomaly detection based on generative pre-training-2(GPT-2).We apply our approach to two industrial systems.The experimental results on two datasets show that our approach outperforms state-of-the-art approaches for log anomaly detection.展开更多
Hybrid beamforming(HBF)has become an attractive and important technology in massive multiple-input multiple-output(MIMO)millimeter-wave(mmWave)systems.There are different hybrid architectures in HBF depending on diffe...Hybrid beamforming(HBF)has become an attractive and important technology in massive multiple-input multiple-output(MIMO)millimeter-wave(mmWave)systems.There are different hybrid architectures in HBF depending on different connection strategies of the phase shifter network between antennas and radio frequency chains.This paper investigates HBF optimization with different hybrid architectures in broadband point-to-point mmWave MIMO systems.The joint hybrid architecture and beamforming optimization problem is divided into two sub-problems.First,we transform the spectral efficiency maximization problem into an equivalent weighted mean squared error minimization problem,and propose an algorithm based on the manifold optimization method for the hybrid beamformer with a fixed hybrid architecture.The overlapped subarray architecture which balances well between hardware costs and system performance is investigated.We further propose an algorithm to dynamically partition antenna subarrays and combine it with the HBF optimization algorithm.Simulation results are presented to demonstrate the performance improvement of our proposed algorithms.展开更多
A resolution method based on Gaussian-like distribution for overlapped linear sweep polarographic peaks was proposed to simultaneously detect the polymetallic components, such as Zn(Ⅱ) and Co(Ⅱ), coexisting in t...A resolution method based on Gaussian-like distribution for overlapped linear sweep polarographic peaks was proposed to simultaneously detect the polymetallic components, such as Zn(Ⅱ) and Co(Ⅱ), coexisting in the leaching solution of zinc hydrometallurgy. A Gaussian-like distribution was constructed as the sub-model of overlapped peaks by analyzing the characteristics of linear sweep polarographic curve. Then, the abscissas of each peak and trough were pinpointed through multi-resolution wavelet decomposition, the curve and its derivative curves were fitted by using nonlinear weighted least squares (NWLS). Finally, overlapped peaks were resolved into independent sub-peaks based on fitted reconstruction parameters. The experimental results show that the relative error of half-wave potential pinpointed by multi-resolution wavelet decomposition is less than 1% and the accuracy of Ip fitted by NWLS is higher than 96%. The proposed resolution method is effective for overlapped linear sweep polarographic peaks of Zn(Ⅱ) and Co(Ⅱ).展开更多
Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of t...Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake.展开更多
The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the ...The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the mixed additive and multiplicative random error model with equality constraints and derive the weighted least squares iterative solution of the model. In addition, aiming at the ill-posed problem of the coefficient matrix, we also propose the ridge estimation iterative solution of ill-posed mixed additive and multiplicative random error model with equality constraints based on the principle of ridge estimation method and derive the U-curve method to determine the ridge parameter. The experimental results show that the weighted least squares iterative solution can obtain more reasonable parameter estimation and precision information than existing solutions, verifying the feasibility of applying the equality constraints to the mixed additive and multiplicative random error model. Furthermore, the ridge estimation iterative solution can obtain more accurate parameter estimation and precision information than the weighted least squares iterative solution.展开更多
In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive fun...In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.展开更多
A novel method,referred to as joint multiple subpulses processing,is developed to calibrate the nonideal transfer function of radio frequency front-end and I/Q imbalance in quadrature modulate/demodulate systems simul...A novel method,referred to as joint multiple subpulses processing,is developed to calibrate the nonideal transfer function of radio frequency front-end and I/Q imbalance in quadrature modulate/demodulate systems simultaneously,which frequently occur in wideband Synthetic Aperture Radar(SAR) systems.Based on the time-frequency relation of the chirp signal and the analyses of the channel errors in wideband SAR,joint multiple subpulses processing method is adopted to separate the image frequency component due to the I/Q channel error.Then,the complete description of the channel error is acquired for building the correction function,which is used to correct the radar raw echo in frequency domain.The validity and capability of this method are demonstrated by the experiments of the channel error correction on the high resolution SAR system with the effective bandwidth of 500 MHz.展开更多
文摘In response to the complex characteristics of actual low-permeability tight reservoirs,this study develops a meshless-based numerical simulation method for oil-water two-phase flow in these reservoirs,considering complex boundary shapes.Utilizing radial basis function point interpolation,the method approximates shape functions for unknown functions within the nodal influence domain.The shape functions constructed by the aforementioned meshless interpolation method haveδ-function properties,which facilitate the handling of essential aspects like the controlled bottom-hole flow pressure in horizontal wells.Moreover,the meshless method offers greater flexibility and freedom compared to grid cell discretization,making it simpler to discretize complex geometries.A variational principle for the flow control equation group is introduced using a weighted least squares meshless method,and the pressure distribution is solved implicitly.Example results demonstrate that the computational outcomes of the meshless point cloud model,which has a relatively small degree of freedom,are in close agreement with those of the Discrete Fracture Model(DFM)employing refined grid partitioning,with pressure calculation accuracy exceeding 98.2%.Compared to high-resolution grid-based computational methods,the meshless method can achieve a better balance between computational efficiency and accuracy.Additionally,the impact of fracture half-length on the productivity of horizontal wells is discussed.The results indicate that increasing the fracture half-length is an effective strategy for enhancing production from the perspective of cumulative oil production.
文摘工业数据由于技术故障和人为因素通常导致数据异常,现有基于约束的方法因约束阈值设置的过于宽松或严格会导致修复错误,基于统计的方法因平滑修复机制导致对时间步长较远的异常值修复准确度较低.针对上述问题,提出了基于奖励机制的最小迭代修复和改进WGAN混合模型的时序数据修复方法.首先,在预处理阶段,保留异常数据,进行信息标注等处理,从而充分挖掘异常值与真实值之间的特征约束.其次,在噪声模块提出了近邻参数裁剪规则,用于修正最小迭代修复公式生成的噪声向量.将其传递至模拟分布模块的生成器中,同时设计了一个动态时间注意力网络层,用于提取时序特征权重并与门控循环单元串联组合捕捉不同步长的特征依赖,并引入递归多步预测原理共同提升模型的表达能力;在判别器中设计了Abnormal and Truth奖励机制和Weighted Mean Square Error损失函数共同反向优化生成器修复数据的细节和质量.最后,在公开数据集和真实数据集上的实验结果表明,该方法的修复准确度与模型稳定性显著优于现有方法.
文摘An S-N curve fitting approach is proposed based on the weighted least square method, and the weights are inversely proportional to the length of mean confidence intervals of experimental data sets. The assumption coincides with the physical characteristics of the fatigue life scatter. Two examples demonstrate the method. It is shown that the method has better accuracy and reasonableness compared with the usual least square method.
文摘Determine the location of a target has gained considerable interest over the past few years. The Received Signal Strength(RSS) measurements and Differential RSS(DRSS) measurements can be converted to distance or distance ratio estimates for constructing a set of linear equations. Based on these linear equations, a constrained weighted least Squares(CWLS) algorithm for target localization is derived. In addition, an iterative technique based on Newton's method is utilized to give a solution. The covariance and bias of the CWLS algorithm is derived using perturbation analysis. Simulation shows that the proposed estimator achieves better performance than existing algorithms with reasonable complexity.
文摘Weighted fusion algorithms, which can be applied in the area of multi-sensor data fusion, are advanced based on weighted least square method. A weighted fusion algorithm, in which the relationship between weight coefficients and measurement noise is established, is proposed by giving attention to the correlation of measurement noise. Then a simplified weighted fusion algorithm is deduced on the assumption that measurement noise is uncorrelated. In addition, an algorithm, which can adjust the weight coefficients in the simplified algorithm by making estimations of measurement noise from measurements, is presented. It is proved by emulation and experiment that the precision performance of the multi-sensor system based on these algorithms is better than that of the multi-sensor system based on other algorithms.
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
基金Supported by the National Natural Science Foundation of China(61290324)
文摘In this paper, we study the problems related to parameter estimation of a single-input and single-output networked control system, which contains possible network-induced delays and packet dropout in both of sensor-to-controller path and controller-to-actuator path. A weighted least squares(WLS) method is designed to estimate the parameters of plant, which could overcome the data uncertainty problem caused by delays and dropout. This WLS method is proved to be consistent and has a good asymptotic property. Simulation examples are given to validate the results.
基金supported by the Aeronautical Science Foundation of China (20105584004)the Science and Technology on Avionics Integration Laboratory
文摘A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position errors. Firstly, the unknown matrix perturbation information is utilized to form the WRTLS problem. Then, the corresponding constrained optimization problem is transformed into an unconstrained one, which is a generalized Rayleigh quotient minimization problem. Thus, the solution can be got through the generalized eigenvalue decomposition and requires no initial state guess process. Simulation results indicate that the proposed algorithm can approach the Cramer-Rao lower bound (CRLB), and the localization solution is asymptotically unbiased.
基金supported by the National Natural Science Foundation of China (No. 11071033)the Fundamental Research Funds for the Central Universities (No. 090405013)
文摘A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.
基金supported by the Preeminent Youth Fund of Sichuan Province,China(Grant No.2012JQ0012)the National Natural Science Foundation of China(Grant Nos.11173008,10974202,and 60978049)the National Key Scientific and Research Equipment Development Project of China(Grant No.ZDYZ2013-2)
文摘For the accurate extraction of cavity decay time, a selection of data points is supplemented to the weighted least square method. We derive the expected precision, accuracy and computation cost of this improved method, and examine these performances by simulation. By comparing this method with the nonlinear least square fitting (NLSF) method and the linear regression of the sum (LRS) method in derivations and simulations, we find that this method can achieve the same or even better precision, comparable accuracy, and lower computation cost. We test this method by experimental decay signals. The results are in agreement with the ones obtained from the nonlinear least square fitting method.
基金NSFC under grant1 0 0 71 0 3 9and by Education Committee of Jiangsu Province under grant0 0 KJB1 1 0 0 0 5 .
文摘In the paper, a result of Walsh and Sharma on least square convergence of Lagrange interpolation polynomials based on the n-th roots of unity is extended to Lagrange interpolation on the sets obtained by projecting vertically the zeros of (1-x)2=P (a,β) n(x),a>0,β>0,(1-x)P(a,β) n(x),a>0,β>-1,(1+x)P P(a,β) n(x),a>-1,β0 and P(a,β) n(x),a>-1,β>-1, respectively, onto the unit circle, where P(a,β) n(x),a>-1,β>-1, stands for the n-th Jacobi polynomial. Moreover, a result of Saff and Walsh is also extended.
文摘In this paper,a sinusoidal signal frequency estimation algorithm is proposed by weighted least square method.Based on the idea of Provencher,three biggest Fourier coefficients in the maximum periodogram are considered,the Fourier coefficients can be written as three equations about the amplitude,phase,and frequency,and the frequency is estimated by solving equations.Because of the error of measurement,weighted least square method is used to solve the frequency equation and get the signal frequency.It is shown that the proposed estimator can approach the Cramer-Rao Bound(CRB)with a low Signal-to-Noise Ratio(SNR)threshold and has a higher accuracy.
基金supported by the National Natural Science Foundation of China(41174162).
文摘The performance of a strapdown inertial navigation system(SINS)largely depends on the accuracy and rapidness of the initial alignment.A novel anti-interference self-alignment algorithm by attitude optimization estimation for SINS on a rocking base is presented in this paper.The algorithm transforms the initial alignment into the initial attitude determination problem by using infinite vector observations to remove the angular motions,the SINS alignment is heuristically established as an optimiza-tion problem of finding the minimum eigenvector.In order to further improve the alignment precision,an adaptive recursive weighted least squares(ARWLS)curve fitting algorithm is used to fit the translational motion interference-contaminated reference vectors according to their time domain characteristics.Simulation studies and experimental results favorably demonstrate its rapidness,accuracy and robustness.
文摘As the scale of software systems expands,maintaining their stable operation has become an extraordinary challenge.System logs are semi-structured text generated by the recording function in the source code and have important research significance in software service anomaly detection.Existing log anomaly detection methods mainly focus on the statistical characteristics of logs,making it difficult to distinguish the semantic differences between normal and abnormal logs,and performing poorly on real-world industrial log data.In this paper,we propose an unsupervised framework for log anomaly detection based on generative pre-training-2(GPT-2).We apply our approach to two industrial systems.The experimental results on two datasets show that our approach outperforms state-of-the-art approaches for log anomaly detection.
基金supported by ZTE Industry-University-Institute Cooperation Funds,the Natural Science Foundation of Shanghai under Grant No.23ZR1407300the National Natural Science Foundation of China un⁃der Grant No.61771147.
文摘Hybrid beamforming(HBF)has become an attractive and important technology in massive multiple-input multiple-output(MIMO)millimeter-wave(mmWave)systems.There are different hybrid architectures in HBF depending on different connection strategies of the phase shifter network between antennas and radio frequency chains.This paper investigates HBF optimization with different hybrid architectures in broadband point-to-point mmWave MIMO systems.The joint hybrid architecture and beamforming optimization problem is divided into two sub-problems.First,we transform the spectral efficiency maximization problem into an equivalent weighted mean squared error minimization problem,and propose an algorithm based on the manifold optimization method for the hybrid beamformer with a fixed hybrid architecture.The overlapped subarray architecture which balances well between hardware costs and system performance is investigated.We further propose an algorithm to dynamically partition antenna subarrays and combine it with the HBF optimization algorithm.Simulation results are presented to demonstrate the performance improvement of our proposed algorithms.
基金Project(2012BAF03B05)supported by the National Key Technology R&D Program of ChinaProject(61025015)supported by the National Natural Science Foundation for Distinguished Young Scholars of China+1 种基金Project(61273185)supported by the National Natural Science Foundation of ChinaProject(2012CK4018)supported by the Science and Technology Project of Hunan Province,China
文摘A resolution method based on Gaussian-like distribution for overlapped linear sweep polarographic peaks was proposed to simultaneously detect the polymetallic components, such as Zn(Ⅱ) and Co(Ⅱ), coexisting in the leaching solution of zinc hydrometallurgy. A Gaussian-like distribution was constructed as the sub-model of overlapped peaks by analyzing the characteristics of linear sweep polarographic curve. Then, the abscissas of each peak and trough were pinpointed through multi-resolution wavelet decomposition, the curve and its derivative curves were fitted by using nonlinear weighted least squares (NWLS). Finally, overlapped peaks were resolved into independent sub-peaks based on fitted reconstruction parameters. The experimental results show that the relative error of half-wave potential pinpointed by multi-resolution wavelet decomposition is less than 1% and the accuracy of Ip fitted by NWLS is higher than 96%. The proposed resolution method is effective for overlapped linear sweep polarographic peaks of Zn(Ⅱ) and Co(Ⅱ).
文摘Bayesian regularized BP neural network(BRBPNN) technique was applied in the chlorophyll-α prediction of Nanzui water area in Dongting Lake. Through BP network interpolation method, the input and output samples of the network were obtained. After the selection of input variables using stepwise/multiple linear regression method in SPSS i1.0 software, the BRBPNN model was established between chlorophyll-α and environmental parameters, biological parameters. The achieved optimal network structure was 3-11-1 with the correlation coefficients and the mean square errors for the training set and the test set as 0.999 and 0.000?8426, 0.981 and 0.0216 respectively. The sum of square weights between each input neuron and the hidden layer of optimal BRBPNN models of different structures indicated that the effect of individual input parameter on chlorophyll- α declined in the order of alga amount 〉 secchi disc depth(SD) 〉 electrical conductivity (EC). Additionally, it also demonstrated that the contributions of these three factors were the maximal for the change of chlorophyll-α concentration, total phosphorus(TP) and total nitrogen(TN) were the minimal. All the results showed that BRBPNN model was capable of automated regularization parameter selection and thus it may ensure the excellent generation ability and robustness. Thus, this study laid the foundation for the application of BRBPNN model in the analysis of aquatic ecological data(chlorophyll-α prediction) and the explanation about the effective eutrophication treatment measures for Nanzui water area in Dongting Lake.
基金supported by the National Natural Science Foundation of China,Grant Nos.42174011,41874001 and 41664001Innovation Found Designated for Graduate Students of ECUT,Grant No.DHYC-202020。
文摘The reasonable prior information between the parameters in the adjustment processing can significantly improve the precision of the parameter solution. Based on the principle of equality constraints, we establish the mixed additive and multiplicative random error model with equality constraints and derive the weighted least squares iterative solution of the model. In addition, aiming at the ill-posed problem of the coefficient matrix, we also propose the ridge estimation iterative solution of ill-posed mixed additive and multiplicative random error model with equality constraints based on the principle of ridge estimation method and derive the U-curve method to determine the ridge parameter. The experimental results show that the weighted least squares iterative solution can obtain more reasonable parameter estimation and precision information than existing solutions, verifying the feasibility of applying the equality constraints to the mixed additive and multiplicative random error model. Furthermore, the ridge estimation iterative solution can obtain more accurate parameter estimation and precision information than the weighted least squares iterative solution.
基金Project(2007AA04Z162) supported by the National High-Tech Research and Development Program of ChinaProjects(2006T089, 2009T062) supported by the University Innovation Team in the Educational Department of Liaoning Province, China
文摘In order to obtain accurate prediction model and compensate for the influence of model mismatch on the control performance of the system and avoid solving nonlinear programming problem,an adaptive fuzzy predictive functional control(AFPFC) scheme for multivariable nonlinear systems was proposed.Firstly,multivariable nonlinear systems were described based on Takagi-Sugeno(T-S) fuzzy models;assuming that the antecedent parameters of T-S models were kept,the consequent parameters were identified on-line by using the weighted recursive least square(WRLS) method.Secondly,the identified T-S models were linearized to be time-varying state space model at each sampling instant.Finally,by using linear predictive control technique the analysis solution of the optimal control law of AFPFC was established.The application results for pH neutralization process show that the absolute error between the identified T-S model output and the process output is smaller than 0.015;the tracking ability of the proposed AFPFC is superior to that of non-AFPFC(NAFPFC) for pH process without disturbances,the overshoot of the effluent pH value of AFPFC with disturbances is decreased by 50% compared with that of NAFPFC;when the process parameters of AFPFC vary with time the integrated absolute error(IAE) performance index still retains to be less than 200 compared with that of NAFPFC.
基金Supported by the National High-Tech Research and Development Plan of China(No.2007AA120302)
文摘A novel method,referred to as joint multiple subpulses processing,is developed to calibrate the nonideal transfer function of radio frequency front-end and I/Q imbalance in quadrature modulate/demodulate systems simultaneously,which frequently occur in wideband Synthetic Aperture Radar(SAR) systems.Based on the time-frequency relation of the chirp signal and the analyses of the channel errors in wideband SAR,joint multiple subpulses processing method is adopted to separate the image frequency component due to the I/Q channel error.Then,the complete description of the channel error is acquired for building the correction function,which is used to correct the radar raw echo in frequency domain.The validity and capability of this method are demonstrated by the experiments of the channel error correction on the high resolution SAR system with the effective bandwidth of 500 MHz.