期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
SQUEEZE FLOW OF A SECOND-ORDER FLUID BETWEEN TWO PARALLEL DISKS OR TWO SPHERES 被引量:1
1
作者 徐春晖 黄文彬 徐泳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第9期1057-1064,共8页
The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial second-order fluid was studied for modeling wet granular materials using the discrete element method. Based on the Reyn... The normal viscous force of squeeze flow between two arbitrary rigid spheres with an interstitial second-order fluid was studied for modeling wet granular materials using the discrete element method. Based on the Reynolds' lubrication theory, the small parameter method was introduced to approximately analyze velocity field and stress distribution between the two disks. Then a similar procedure was carried out for analyzing the normal interaction between two nearly touching, arbitrary rigid spheres to obtain the pressure distribution and the resulting squeeze force. It has been proved that the solutions can be reduced to the case of a Newtonian fluid when the non-Newtonian terms are neglected. 展开更多
关键词 discrete element method second-order fluid squeeze flow normal viscous force small parameter method
下载PDF
The squeeze flow of a bi-viscosity fluid between two rigid spheres with wall slip
2
作者 Tianyi Zhou Da Lin +3 位作者 Yujia Shen Wei Yang Chunhui Xu Xuedong Chen 《Particuology》 SCIE EI CAS CSCD 2023年第8期153-160,共8页
In this paper,the squeeze flow between two rigid spheres with a bi-viscosity fluid is examined.Based on lubrication theory,the squeeze force is calculated by deriving the pressure and velocity expressions.The results ... In this paper,the squeeze flow between two rigid spheres with a bi-viscosity fluid is examined.Based on lubrication theory,the squeeze force is calculated by deriving the pressure and velocity expressions.The results of the normal squeeze force are discussed,and fitting functions of the squeeze and correction coefficients are given.The squeeze force between the rigid spheres increases linearly or logarithmically with the velocity when most or part of the boundary fluid reaches the yield state,respectively.Furthermore,the slip correction coefficient decreases with the increase in the velocity.The investigation may contribute to the further study of bi-viscosity fluids between rigid spheres with wall slip. 展开更多
关键词 squeeze flow Bi-viscosity fluid Rigid spheres Wall slip
原文传递
Hydromagnetic Squeezing Nanofluid Flow between Two Vertical Plates in Presence of a Chemical Reaction
3
作者 Benjamin Matur Madit Jackson K. Kwanza Phineas Roy Kiogora 《Journal of Applied Mathematics and Physics》 2024年第1期126-146,共21页
In this study, Hydromagnetic Squeezing Nanofluid flow between two vertical plates in presence of a chemical reaction has been investigated. The governing equations were transformed by similarity transformation and the... In this study, Hydromagnetic Squeezing Nanofluid flow between two vertical plates in presence of a chemical reaction has been investigated. The governing equations were transformed by similarity transformation and the resulting ordinary differential equations were solved by collocation method. The velocity, temperature, concentration and magnetic induction profiles were determined with help of various flow parameters. The numerical scheme was simulated with aid of MATLAB. The results showed that increasing the squeeze number only boosts velocity and concentration while lowering temperature. Conversely, increasing the Hartmann number, Reynold’s magnetic number, Eckert number and Thermal Grashof number generally increases temperature but decreases both velocity and concentration. Chemical reaction rate and Soret number solely elevate concentration while Schmidt number only reduces it. The results of this study will be useful in the fields of oil and gas industry, plastic processing industries, filtration, food processing, lubrication system in machinery, Microfluidics devices for drug delivery and other related fields of nanotechnology. 展开更多
关键词 HYDROMAGNETIC Squeezing flow NANOFLUID Variable Magnetic Field Chemical Reaction
下载PDF
Transient mixed convection flow arising due to thermal and mass diffusion over porous sensor surface inside squeezing horizontal channel 被引量:1
4
作者 M.MAHMOOD S.ASGHAR M.A.HOSSAIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第1期97-112,共16页
The double diffusion effect on the mixed convection flow over a horizontal porous sensor surface placed inside a horizontal channel is analyzed. With the appropriate transformations, the unsteady equations governing t... The double diffusion effect on the mixed convection flow over a horizontal porous sensor surface placed inside a horizontal channel is analyzed. With the appropriate transformations, the unsteady equations governing the flow are reduced to non-similar boundary layer equations which are solved numerically for the time-dependent mixed convection parameter. The asymptotic solutions are obtained for small and large values of the time-dependent mixed convection parameter. The results are discussed in terms of the skin friction, the heat transfer coefficient, the mass transfer coefficient, and the velocity, temperature, and concentration profiles for different values of the Prandtl number, the Schmidt number, the squeezing index, and the mixed convection parameter. 展开更多
关键词 squeezed flow mass transfer mixed convection horizontal surface
下载PDF
Three-dimensional mixed convection squeezing flow
5
作者 T.HAYAT A.QAYYUM A.ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第1期47-60,共14页
The unsteady mixed convection squeezing flow of an incompressible Newtonian fluid between two vertical parallel planes is discussed. The fluid is electrically conducting. The governing equations are transformed into o... The unsteady mixed convection squeezing flow of an incompressible Newtonian fluid between two vertical parallel planes is discussed. The fluid is electrically conducting. The governing equations are transformed into ordinary differential equations (ODEs) by appropriate transformations. The transformed equations are solved successfully by a modern and powerful technique. The effects of the emerging parameters on the flow and heat transfer characteristics are studied and examined. The values of the skin friction coefficient and the local Nusselt number are tabulated and analyzed. 展开更多
关键词 squeezing flow mixed convection vertical rotating channel unsteadystretching porous sheet
下载PDF
Effect of squeeze casting process on microstructures and flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy 被引量:2
6
作者 Yuan-ji Shi Lan-ji Liu +4 位作者 Lei Zhang Li-jun Zhang Li Zheng Run-xia Li Bao-yi Yu 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第9期957-965,共9页
The effects of squeeze casting process on microstructure and flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy were investigated and the hot-compression tests of gravity casting and squeeze casting alloy were carried ... The effects of squeeze casting process on microstructure and flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy were investigated and the hot-compression tests of gravity casting and squeeze casting alloy were carried out at 350-500°C and 0.001-5s-1.The results show that microstructures of Al-17.5Si-4Cu-0.5Mg alloys were obviously improved by squeeze casting.Due to the decrease of coarse primary Si particles,softα-Al dendrite as well as the fine microstructures appeared,and the mechanical properties of squeeze casting alloys were improved.However,when the strain rate rises or the deformation temperature decreases,the flow stress increases and it was proved that the alloy is a positive strain rate sensitive material.It was deduced that compared with the gravity casting alloy,squeeze casting alloy(solidified at 632 MPa)is more difficult to deform since the flow stress of squeeze casting alloy is higher than that of gravity casting alloy when the deformation temperature exceeds 400°C.Flow stress behavior of Al-17.5Si-4Cu-0.5Mg alloy can be described by a hyperbolic sine form with Zener-Hollomon parameter,and the average hot deformation activation energy Q of gravity casting alloy and squeeze casting alloy is 278.97 and 308.77kJ/mol,respectively. 展开更多
关键词 squeeze casting Al-Si-Cu-Mg alloy Hot compression deformation flow stress Constitutive equation
原文传递
Effects of viscous dissipation and slip velocity on two-dimensional and axisymmetric squeezing flow of Cu-water and Cu-kerosene nanofluids 被引量:4
7
作者 Umar Khan Naveed Ahmed +1 位作者 Mir Asadullah Syed Tauseef Mohyud-din 《Propulsion and Power Research》 SCIE 2015年第1期40-49,共10页
Squeezing flow of nanofluids has been taken into account under the effects of viscous dissipation and velocity slip.Two types of base fluids are used to study the behavior of Copper nanoparticles between parallel plat... Squeezing flow of nanofluids has been taken into account under the effects of viscous dissipation and velocity slip.Two types of base fluids are used to study the behavior of Copper nanoparticles between parallel plates.Nonlinear ordinary differential equations governing the flow are obtained by imposing similarity transformations on conservation laws.Resulting equations are solved by using an efficient analytical technique the variation of parameters method(VPM).Influences of nanoparticle concentration and different emerging parameters on flow profiles are presented graphically coupled with comprehensive discussions.A numerical solution is also sought for the sake of comparison.Effect of different parameters on skin friction coefficient and Nusselt number is also discussed. 展开更多
关键词 Squeezing flow Nanofluids Variation of parameters method(VPM) Velocity slip Numerical solution
原文传递
Heat transfer analysis of GO-water nanofluid flow between two parallel disks 被引量:2
8
作者 M.Azimi R.Riazi 《Propulsion and Power Research》 SCIE 2015年第1期23-30,共8页
In this paper,the unsteady magnetohydrodynamic(MHD)squeezing flow between two parallel disks(which is filled with nanofluid)is considered.The Galerkin optimal homotopy asymptotic method(GOHAM)is used to obtain the sol... In this paper,the unsteady magnetohydrodynamic(MHD)squeezing flow between two parallel disks(which is filled with nanofluid)is considered.The Galerkin optimal homotopy asymptotic method(GOHAM)is used to obtain the solution of the governing equations.The effects of Hartman number,nanoparticle volume fraction,Brownian motion parameter and suction/blowing parameter on nanofluid concentration,temperature and velocity profiles have been discussed.Furthermore,a comparison between obtained solutions and numerical ones have been provided. 展开更多
关键词 NANOFLUID Squeezing flow Nanoparticle concentration Heat transfer enhancement Analytical solution
原文传递
Magnetically propelled Carreau fluid flow over penetrable sensor surface influenced by thermal radiation,Joule heating and heat generation
9
作者 B J Gireesha B Nagaraja +2 位作者 N Srikantha N G Rudraswamy A Felicita 《Communications in Theoretical Physics》 SCIE CAS CSCD 2022年第2期9-18,共10页
This examination emphasizes the analysis of thermal transmission of Carreau fluid flow on a permeable sensor surface equipped with radiation,Joule heating,an internal heat source,and a magnetic field.With the above ef... This examination emphasizes the analysis of thermal transmission of Carreau fluid flow on a permeable sensor surface equipped with radiation,Joule heating,an internal heat source,and a magnetic field.With the above effects and assumptions,the equations that administer the flow are formulated.A configured system of equations is productively reduced to a system of ordinary differential equations.The reduced system is then dealt with using the Runge–Kutta-Fehlberg fourth–fifth order tool equipped by the shooting technique.Derived numerical solutions are utilized to plot graphs and tables.The conclusion of the study outlines some important findings such as the power law index,the thermal radiation parameter and the heat source parameter enhance the thermal panel whereas the Weissenberg number deescalates the same.The power law index and permeable velocity decrease the velocity panel significantly.Diagrammatic representation of streamlines of the flow has been given to strengthen the study.A detailed description has been produced about the results obtained in the study. 展开更多
关键词 sensor surface Carreau fluid squeezed flow thermal radiation heat generation
原文传递
Impact of melting heat transfer in the time-dependent squeezing nanofluid flow containing carbon nanotubes in a Darcy-Forchheimer porous media with Cattaneo-Christov heat flux
10
作者 Muhammad Ramzan Nomana Abid +1 位作者 Dianchen Lu Iskander Tlili 《Communications in Theoretical Physics》 SCIE CAS CSCD 2020年第8期154-164,共11页
This study aims to investigate the time-dependent squeezing of nanofluid flow, comprising carbon nanotubes of dual nature, e.g. single-walled carbon nanotubes, and multi-walled carbon nanotubes,between two parallel di... This study aims to investigate the time-dependent squeezing of nanofluid flow, comprising carbon nanotubes of dual nature, e.g. single-walled carbon nanotubes, and multi-walled carbon nanotubes,between two parallel disks. Numerical simulations of the proposed novel model are conducted,accompanied by Cattaneo-Christov heat flux in a Darcy-Forchheimer permeable media. Additional impacts of homogeneous–heterogeneous reactions are also noted, including melting heat. A relevant transformation procedure is implemented for the transition of partial differential equations to the ordinary variety. A computer software-based MATLAB function, bvp4c, is implemented to handle the envisioned mathematical model. Sketches portraying impacts on radial velocity, temperature, and concentration of the included parameters are given, and deliberated upon. Skin friction coefficient and local Nusselt number are evaluated via graphical illustrations. It is observed that the local inertia coefficient has an opposite impact on radial velocity and temperature field. It is further perceived that melting and radiation parameters demonstrate a retarding effect on temperature profile. 展开更多
关键词 melting heat transfer Darcy-Forchheimer porous media Cattaneo-Christov heat flux carbon nanotubes squeezing flow homogeneous–heterogeneous reactions
原文传递
Numerical investigation of two-dimensional and axisymmetric unsteady flow between parallel plates
11
作者 P.Raissi M.Shamlooei +1 位作者 S.M.Ebrahimzadeh Sepasgozar M.Ayani 《Propulsion and Power Research》 SCIE 2016年第4期318-325,共8页
In this study,heat and mass transfer in a viscous fluid which is squeezed between parallel plates Is investigated numerically using the fouith-order Runge-Kutta method.The numerical investigation is carried out for di... In this study,heat and mass transfer in a viscous fluid which is squeezed between parallel plates Is investigated numerically using the fouith-order Runge-Kutta method.The numerical investigation is carried out for different governing parameters namely;the squeeze number,Prandtl number,Eckert number,Schmidt number and the chemical reaction parameter.Results show that Nusselt number has direct relationship with Prandtl number and Eckert number but it has reverse relationship with the squeeze number.Also it can be found that Sherwood number increases as Schmidt number and chemical reaction parameter increases but it decreases with increases of the squeeze number. 展开更多
关键词 Squeezing flow Heat transfer Mass transfer Schmidt number Eckert number Chemical reaction parameter
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部