In this work, the authors propose the study of a wind speed variable based on the DFAM (double fed asynchronous machine). The model of the turbine is drawn from the classical equations describing the operation of a ...In this work, the authors propose the study of a wind speed variable based on the DFAM (double fed asynchronous machine). The model of the turbine is drawn from the classical equations describing the operation of a variable wind speed. The torque generated by the turbine is applied to the DFAM directly connected on the network side and the stator via a bidirectional converter side rotor. This configuration allows velocity variations of ±30% around the synchronous speed and the converter is then sized to one third of the rated power of the machine. The DFAM is controlled by a control vector ensuring operation of the wind turbine power coefficient maximum.展开更多
The heating calculation of three-phase squirrel- cage asynchronous motor on the condition of starting for a prescribed rotary angle is firstly studied with time dissection method and its corresponding algorithm is pro...The heating calculation of three-phase squirrel- cage asynchronous motor on the condition of starting for a prescribed rotary angle is firstly studied with time dissection method and its corresponding algorithm is provided. Then based upon the algorithm, a new method for motor power selection is established. Motor initial power determined by load power ischecked and modified in terms of time crit erion, heating criterion,and starting torque criterion.An appropriate motor power which meets three criterions is obtained at last, in the meantime, working displacement matrix andfrequency matrix used for control are acquired. Lifting motor of MDJ1800 low-level high- speed palletizer is taken as a reaI case in the paper.展开更多
This paper investigates the function of doubly-fed asynchronous machine(DASM)with emphasis placed on its ability to the stabilization of the power system including wind generators.P(active power)and Q(reactive power)c...This paper investigates the function of doubly-fed asynchronous machine(DASM)with emphasis placed on its ability to the stabilization of the power system including wind generators.P(active power)and Q(reactive power)compensation from DASM can be regulated independently through secondary-excitation controlling.Simulation results by power system computer aided design(PSCAD)show that DASM can restore the wind-generator system to a normal operating condition rapidly even following severe transmission-line failures.Comparison studies have also been performed between wind turbine pitch control and proposed method.展开更多
The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved p...The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm.展开更多
文摘In this work, the authors propose the study of a wind speed variable based on the DFAM (double fed asynchronous machine). The model of the turbine is drawn from the classical equations describing the operation of a variable wind speed. The torque generated by the turbine is applied to the DFAM directly connected on the network side and the stator via a bidirectional converter side rotor. This configuration allows velocity variations of ±30% around the synchronous speed and the converter is then sized to one third of the rated power of the machine. The DFAM is controlled by a control vector ensuring operation of the wind turbine power coefficient maximum.
基金This project is supported by National 863 Foundation (863-512-9801-06)
文摘The heating calculation of three-phase squirrel- cage asynchronous motor on the condition of starting for a prescribed rotary angle is firstly studied with time dissection method and its corresponding algorithm is provided. Then based upon the algorithm, a new method for motor power selection is established. Motor initial power determined by load power ischecked and modified in terms of time crit erion, heating criterion,and starting torque criterion.An appropriate motor power which meets three criterions is obtained at last, in the meantime, working displacement matrix andfrequency matrix used for control are acquired. Lifting motor of MDJ1800 low-level high- speed palletizer is taken as a reaI case in the paper.
文摘This paper investigates the function of doubly-fed asynchronous machine(DASM)with emphasis placed on its ability to the stabilization of the power system including wind generators.P(active power)and Q(reactive power)compensation from DASM can be regulated independently through secondary-excitation controlling.Simulation results by power system computer aided design(PSCAD)show that DASM can restore the wind-generator system to a normal operating condition rapidly even following severe transmission-line failures.Comparison studies have also been performed between wind turbine pitch control and proposed method.
基金This work was supported by Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China(J2022114,Risk Assessment and Coordinated Operation of Coastal Wind Power Multi-Point Pooling Access System under Extreme Weather).
文摘The lack of reactive power in offshore wind farms will affect the voltage stability and power transmission quality of wind farms.To improve the voltage stability and reactive power economy of wind farms,the improved particle swarmoptimization is used to optimize the reactive power planning in wind farms.First,the power flow of offshore wind farms is modeled,analyzed and calculated.To improve the global search ability and local optimization ability of particle swarm optimization,the improved particle swarm optimization adopts the adaptive inertia weight and asynchronous learning factor.Taking the minimum active power loss of the offshore wind farms as the objective function,the installation location of the reactive power compensation device is compared according to the node voltage amplitude and the actual engineering needs.Finally,a reactive power optimizationmodel based on Static Var Compensator is established inMATLAB to consider the optimal compensation capacity,network loss,convergence speed and voltage amplitude enhancement effect of SVC.Comparing the compensation methods in several different locations,the compensation scheme with the best reactive power optimization effect is determined.Meanwhile,the optimization results of the standard particle swarm optimization and the improved particle swarm optimization are compared to verify the superiority of the proposed improved algorithm.
基金supported by National Natural Science Foundation of China(61533013,61273144)Scientific Technology Research and Development Plan Project of Tangshan(13130298B)Scientific Technology Research and Development Plan Project of Hebei(z2014070)