期刊文献+
共找到180,445篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of connected automated vehicle on stability and energy consumption of heterogeneous traffic flow system
1
作者 申瑾 赵建东 +2 位作者 刘华清 姜锐 余智鑫 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期291-301,共11页
With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)wi... With the development of intelligent and interconnected traffic system,a convergence of traffic stream is anticipated in the foreseeable future,where both connected automated vehicle(CAV)and human driven vehicle(HDV)will coexist.In order to examine the effect of CAV on the overall stability and energy consumption of such a heterogeneous traffic system,we first take into account the interrelated perception of distance and speed by CAV to establish a macroscopic dynamic model through utilizing the full velocity difference(FVD)model.Subsequently,adopting the linear stability theory,we propose the linear stability condition for the model through using the small perturbation method,and the validity of the heterogeneous model is verified by comparing with the FVD model.Through nonlinear theoretical analysis,we further derive the KdV-Burgers equation,which captures the propagation characteristics of traffic density waves.Finally,by numerical simulation experiments through utilizing a macroscopic model of heterogeneous traffic flow,the effect of CAV permeability on the stability of density wave in heterogeneous traffic flow and the energy consumption of the traffic system is investigated.Subsequent analysis reveals emergent traffic phenomena.The experimental findings demonstrate that as CAV permeability increases,the ability to dampen the propagation of fluctuations in heterogeneous traffic flow gradually intensifies when giving system perturbation,leading to enhanced stability of the traffic system.Furthermore,higher initial traffic density renders the traffic system more susceptible to congestion,resulting in local clustering effect and stop-and-go traffic phenomenon.Remarkably,the total energy consumption of the heterogeneous traffic system exhibits a gradual decline with CAV permeability increasing.Further evidence has demonstrated the positive influence of CAV on heterogeneous traffic flow.This research contributes to providing theoretical guidance for future CAV applications,aiming to enhance urban road traffic efficiency and alleviate congestion. 展开更多
关键词 heterogeneous traffic flow CAV linear stability nonlinear stability energy consumption
下载PDF
Enhanced High-Temperature Cycling Stability of Garnet-Based All Solid-State Lithium Battery Using a Multi-Functional Catholyte Buffer Layer
2
作者 Leqi Zhao Yijun Zhong +2 位作者 Chencheng Cao Tony Tang Zongping Shao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期59-73,共15页
The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder... The pursuit of safer and high-performance lithium-ion batteries(LIBs)has triggered extensive research activities on solid-state batteries,while challenges related to the unstable electrode-electrolyte interface hinder their practical implementation.Polymer has been used extensively to improve the cathode-electrolyte interface in garnet-based all-solid-state LIBs(ASSLBs),while it introduces new concerns about thermal stability.In this study,we propose the incorporation of a multi-functional flame-retardant triphenyl phos-phate additive into poly(ethylene oxide),acting as a thin buffer layer between LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM811)cathode and garnet electro-lyte.Through electrochemical stability tests,cycling performance evaluations,interfacial thermal stability analysis and flammability tests,improved thermal stability(capacity retention of 98.5%after 100 cycles at 60℃,and 89.6%after 50 cycles at 80℃)and safety characteristics(safe and stable cycling up to 100℃)are demonstrated.Based on various materials characterizations,the mechanism for the improved thermal stability of the interface is proposed.The results highlight the potential of multi-functional flame-retardant additives to address the challenges associated with the electrode-electrolyte interface in ASSLBs at high temperature.Efficient thermal modification in ASSLBs operating at elevated temperatures is also essential for enabling large-scale energy storage with safety being the primary concern. 展开更多
关键词 Solid-state battery Cathode electrolyte interlayer Flame-retardant additive Cycling stability Interfacial stability
下载PDF
Rainfall-triggered waste dump instability analysis based on surface 3D deformation in physical model test
3
作者 LI Hanlin JIN Xiaoguang +2 位作者 HE Jie XUE Yunchuan YANG Zhongping 《Journal of Mountain Science》 SCIE CSCD 2024年第5期1549-1563,共15页
Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the ra... Landslide is the second largest natural disaster after earthquake. It is of significance to study the evolution laws and failure mechanism of landslides based on its surface 3D deformation information. Based on the rainfall-triggered waste dump instability model test, we studied the failure mechanisms of the waste dump by integrating surface deformation and internal slope stress and proposed novel parameters for identifying landslide stability. We developed a noncontact measurement device, which can obtain millimeter-level 3D deformation data for surface scene in physical model test;Then we developed the similar materials and established a test model for a waste dump. Based on the failure characteristics of slope surface, internal stress of slope body and displacement contours during the whole process, we divided the slope instability process in model test into four stages: rainfall infiltration and surface erosion, shallow sliding, deep sliding, and overall instability. Based on the obtained surface deformation data, we calculated the volume change during slope instability process and compared it with the point displacement on slope surface. The results showed that the volume change can not only reflect the slow-ultra acceleration process of slope failure, but also fully reflect the above four stages and reduce the fluctuations caused by random factors. Finally, this paper proposed two stability identification parameters: the volume change rate above the slip surface and the relative velocity of volume change rate. According to the calculation of these two parameters in model test, they can be used for study the deformation and failure mechanism of slope stability. 展开更多
关键词 Waste dump stability Physical model test Surface 3D deformation stability identification
下载PDF
A NOTE ON THE GENERAL STABILIZATION OF DISCRETE FEEDBACK CONTROL FOR NON-AUTONOMOUS HYBRID NEUTRAL STOCHASTIC SYSTEMS WITH A DELAY
4
作者 冯立超 张春艳 +1 位作者 曹进德 武志辉 《Acta Mathematica Scientia》 SCIE CSCD 2024年第3期1145-1164,共20页
Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existi... Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form. 展开更多
关键词 hybrid neutral stochastic differential delay system discrete feedback control general stabilization polynomial stabilization
下载PDF
Significantly enhanced thermal stability of HMX by phase-transition lysozyme coating
5
作者 Jiahui Liu Congmei Lin +3 位作者 Jianhu Zhang Chengcheng Zeng Zhijian Yang Fude Nie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期60-68,共9页
A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transitio... A new robust bio-inspired route by using lysozyme aqueous solution for surface modification on 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX)was described in this paper.HMX crystals were coated by in situ phase transition of lysozyme(PTL)molecules.The HMX decorated by PTL was characterized by SEM,XRD,FTIR and XPS,demonstrating a dense core-shell coating layer.The coverage of lysozyme on HMX crystal was calculated by the ratio of sulfur content.The surface coverage increased from 60.5% to 93.5% when the content of PTL was changed from 0.5 wt% to 2.0 wt%,indicating efficient coating.The thermal stability of HMX was investigated by in situ XRD and DSC.The thermal phase transition temperature of HMX(β to δ phase)was delayed by 42℃ with 2.0 wt% PTL coating,which prevented HMX from thermal damage and sensitivity by the effect of PTL coating.After heating at 215℃,large cracks appeared in the naked HMX crystal,while the PTL coated HMX still maintained intact,with the impact energy of HMX dropped dramatically from 5 J to 2 J.However,the impact energy of HMX with 1.0 wt% and 2.0 wt% coating content(HMX@PTL-1.0 and HMX@PTL-2.0)was unchanged(5 J).Present results potentially enable large-scale fabrication of polymorphic energetic materials with outstanding thermal stability by novel lysozyme coating. 展开更多
关键词 HMX LYSOZYME Phase transition Thermal stability Sensitivity
下载PDF
Stabilization Controller of An Extended Chained Nonholonomic System With Disturbance:An FAS Approach
6
作者 Zhongcai Zhang Guangren Duan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第5期1262-1273,共12页
This study examines the stabilization issue of extended chained nonholonomic systems(ECNSs)with external disturbance.Unlike the existing approaches,we transform the considered system into a fully actuated system(FAS)m... This study examines the stabilization issue of extended chained nonholonomic systems(ECNSs)with external disturbance.Unlike the existing approaches,we transform the considered system into a fully actuated system(FAS)model,simplifying the stabilizing controller design.We implement a separate controller design and propose exponential stabilization controller and finite-time stabilization controller under finite-time disturbance observer(FTDO)for the two system inputs.In addition,we discuss the specifics of global stabilization control design.Our approach demonstrates that two system states exponentially or asymptotically converge to zero under the provided switching stabilization control strategy,while all other system states converge to zero within a finite time. 展开更多
关键词 design stabilIZATION system
下载PDF
Passivity-Based Stabilization for Switched Stochastic Nonlinear Systems
7
作者 Yaowei Sun Jun Zhao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第5期1307-1309,共3页
Dear Editor,This letter addresses the passivity-based mean square exponential stabilization problem for switched stochastic nonlinear systems.A concept of generalized small-time norm-observability is presented and an ... Dear Editor,This letter addresses the passivity-based mean square exponential stabilization problem for switched stochastic nonlinear systems.A concept of generalized small-time norm-observability is presented and an appropriate test condition is also provided.For pre-given passivity rate and average dwell time,a set of feedback controllers is designed by use of the passivity property. 展开更多
关键词 PROPERTY LETTER stabilIZATION
下载PDF
Set Stabilization of Large-Scale Stochastic Boolean Networks:A Distributed Control Strategy
8
作者 Lin Lin Jinde Cao +1 位作者 Jianquan Lu Leszek Rutkowski 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第3期806-808,共3页
Dear Editor,This letter deals with the set stabilization of stochastic Boolean control networks(SBCNs)by the pinning control strategy,which is to realize the full control for systems by imposing control inputs on a fr... Dear Editor,This letter deals with the set stabilization of stochastic Boolean control networks(SBCNs)by the pinning control strategy,which is to realize the full control for systems by imposing control inputs on a fraction of agents. 展开更多
关键词 BOOLEAN stabilIZATION LETTER
下载PDF
Stability and melting behavior of boron phosphide under high pressure
9
作者 梁文嘉 向晓君 +2 位作者 李倩 梁浩 彭放 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期579-584,共6页
Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and s... Boron phosphide(BP)has gained significant research attention due to its unique photoelectric and mechanical properties.In this work,we investigated the stability of BP under high pressure using x-ray diffraction and scanning electron microscope.The phase diagram of BP was explored in both B-rich and P-rich environments,revealing crucial insight into its behavior at 5.0 GPa.Additionally,we measured the melting curve of BP from 8.0 GPa to 15.0 GPa.Our findings indicate that the stability of BP under high pressure is improved within B-rich and P-rich environments.Furthermore,we report a remarkable observation of melting curve frustration at 10.0 GPa.This study will enhance our understanding of stability of BP under high pressure,shedding light on its potential application in semiconductor,thermal,and light-transmitting devices. 展开更多
关键词 boron phosphide stabilITY melting curve high pressure
下载PDF
Output Feedback Stabilization of High-Order Nonlinear Time-Delay Systems With Low-Order and High-Order Nonlinearities
10
作者 Meng-Meng Jiang Kemei Zhang Xue-Jun Xie 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第5期1304-1306,共3页
Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order obs... Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order observer,based on homogeneous domination theory together with the adding a power integrator method,an output feedback controller is developed guarantee the equilibrium of the closed system globally uniformly asymptotically stable. 展开更多
关键词 Nonlinear stabilIZATION GUARANTEE
下载PDF
A novel responsive stabilizing Janus nanosilica as a nanoplugging agent in water-based drilling fluids for exploiting hostile shale environments
11
作者 Alain Pierre Tchameni Lv-Yan Zhuo +5 位作者 Lesly Dasilva Wandji Djouonkep Robert Dery Nagre Lu-Xin Chen Lin Zhao Chao Ma Bin-Qiang Xie 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1190-1210,共21页
Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not bee... Thermo-responsive nanocomposites have recently emerged as potential nanoplugging agents for shale stabilization in high-temperature water-based drilling fluids(WBDFs). However, their inhibitory properties have not been very effective in high-temperature drilling operations. Thermo-responsive Janus nanocomposites are expected to strongly interact with clay particles from the inward hemisphere of nanomaterials, which drive the establishment of a tighter hydrophobic membrane over the shale surface at the outward hemisphere under geothermal conditions for shale stabilization. This work combines the synergistic benefits of thermo-responsive and zwitterionic nanomaterials to synchronously enhance the chemical inhibitions and plugging performances in shale under harsh conditions. A novel thermoresponsive Janus nanosilica(TRJS) exhibiting zwitterionic character was synthesized, characterized,and assessed as shale stabilizer for WBDFs at high temperatures. Compared to pristine nanosilica(Si NP)and symmetrical thermo-responsive nanosilica(TRS), TRJS exhibited anti-polyelectrolyte behaviour, in which electrolyte ions screened the electrostatic attraction between the charged particles, potentially stabilizing nanomaterial in hostile shaly environments(i.e., up to saturated brine or API brine). Macroscopically, TRJS exhibited higher chemical inhibition than Si NP and TRS in brine, prompting a better capability to control pressure penetration. TRJS adsorbed onto the clay surface via chemisorption and hydrogen bonding, and the interactions became substantial in brine, according to the results of electrophoretic mobility, surface wettability, and X-ray diffraction. Thus, contributing to the firm trapping of TRJS into the nanopore structure of the shale, triggering the formation of a tight hydrophobic membrane over the shale surface from the outward hemisphere. The addition of TRJS into WBDF had no deleterious effect on fluid properties after hot-treatment at 190℃, implying that TRJS could find potential use as a shale stabilizer in WBDFs in hostile environments. 展开更多
关键词 Janus nanosilica Thermo-responsive copolymer Anti-polyelectrolyte effect Shale stabilizer Inhibition Plugging Drilling fluid
下载PDF
Interfacial modification using the cross-linkable tannic acid for highly-efficient perovskite solar cells with excellent stability
12
作者 Xing Gao Lirong Rong +6 位作者 Fei Wu Yen-Hung Lin Ye Zeng Junhong Tan Rongxing He Cheng Zhong Linna Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期236-244,共9页
Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caus... Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caused by a variety of reasons,including ions diffusion,surface and grain boundary defects,etc.In this work,the cross-linkable tannic acid(TA)is introduced to modify perovskite film through post-treatment method.The numerous organic functional groups(–OH and C=O)in TA can interact with the uncoordinated Pb^(2+)and I^(-)ions in perovskite,thus passivating defects and inhibiting ions diffusion.In addition,the formed TA network can absorb a small amount of the residual moisture inside the device to protect the perovskite layer.Furthermore,TA modification regulates the energy level of perovskite,and reduces interfacial charge recombination.Ultimately,following TA treatment,the device efficiency is increased significantly from 21.31%to 23.11%,with a decreased hysteresis effect.Notably,the treated device shows excellent air,thermal,and operational stability.In light of this,the readily available,inexpensive TA has the potential to operate as a multipurpose interfacial modifier to increase device efficiency while also enhancing device stability. 展开更多
关键词 Tannic acid Defect passivation lons diffusion HYDROPHILIC stabilITY Perovskite solar cells
下载PDF
Functional nanolayers favor the stability of solid-electrolyteinterphase in rechargeable batteries
13
作者 Huiqiao Liu Jiakun Zhang +3 位作者 Jinjin Fu Chao Li Yang Fan Kangzhe Cao 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期1-5,共5页
Rechargeable batteries have brought us lots of convenience and changed the way we live.However,the demand for higher energy density,longer cycle life,and more fast charging ability urges researchers to develop advance... Rechargeable batteries have brought us lots of convenience and changed the way we live.However,the demand for higher energy density,longer cycle life,and more fast charging ability urges researchers to develop advanced battery material and chemistry[1,2]. 展开更多
关键词 BATTERY ELECTROLYTE stability
下载PDF
Influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel
14
作者 N.HUMNEKAR D.SRINIVASACHARYA 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期563-580,共18页
The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dyn... The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented. 展开更多
关键词 NANOFLUID inclined channel variable viscosity linear stability double dif-fusion porous medium
下载PDF
Mechanical Modeling and Analysis of Stability Deterioration of Production Well During Marine Hydrate Depressurization Production
15
作者 SUN Huan-zhao CHANG Yuan-jiang +4 位作者 SUN Bao-jiang WANG Kang CHEN Guo-ming LI Hao DAI Yong-guo 《China Ocean Engineering》 SCIE EI CSCD 2024年第2期338-351,共14页
Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence d... Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence during depressurization,which will destroy the original force state of the production well.However,existing research on the stability of oil and gas production wells assumes the formation to be stable,and lacks consideration of the force exerted on the hydrate production well by formation subsidence caused by hydrate decomposition during production.To fill this gap,this paper proposes an analytical method for the dynamic evolution of the stability of hydrate production well considering the effects of hydrate decomposition.Based on the mechanical model of the production well,the basis for stability analysis has been proposed.A multi-field coupling model of the force state of the production well considering the effect of hydrate decomposition and formation subsidence is established,and a solver is developed.The analytical approach is verified by its good agreement with the results from the numerical method.A case study found that the decomposition of hydrate will increase the pulling-down force and reduce the supporting force,which is the main reason for the stability deterioration.The higher the initial hydrate saturation,the larger the reservoir thickness,and the lower the production pressure,the worse the stability or even instability.This work can provide a theoretical reference for the stability maintaining of the production well. 展开更多
关键词 natural gas hydrate production well depressurization production formation deformation stability deterioration
下载PDF
Structural and electrochemical stabilization enabling high-energy P3-type Cr-based layered oxide cathode for K-ion batteries
16
作者 Wonseok Ko Seokjin Lee +7 位作者 Hyunyoung Park Jungmin Kang Jinho Ahn Yongseok Lee Gwangeon Oh Jung-Keun Yoo Jang-Yeon Hwang Jongsoon Kim 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期81-93,共13页
Layered-type transition metal(TM)oxides are considered as one of the most promising cathodes for K-ion batteries because of the large theoretical gravimetric capacity by low molar mass.However,they suffer from severe ... Layered-type transition metal(TM)oxides are considered as one of the most promising cathodes for K-ion batteries because of the large theoretical gravimetric capacity by low molar mass.However,they suffer from severe structural change by de/intercalation and diffusion of K^(+)ions with large ionic size,which results in not only much lower reversible capacity than the theoretical capacity but also poor power capability.Thus,it is important to enhance the structural stability of the layered-type TM oxides for outstanding electrochemical behaviors under the K-ion battery system.Herein,it is investigated that the substitution of the appropriate Ti^(4+)contents enables a highly enlarged reversible capacity of P3-type KxCrO_(2) using combined studies of first-principles calculation and various experiments.Whereas the pristine P3-type KxCrO_(2) just exhibits the reversible capacity of∼120 mAh g^(−1) in the voltage range of 1.5-4.0 V(vs.K^(+)/K),the∼0.61 mol K^(+)corresponding to∼150 mAh g^(−1) can be reversible de/intercalated at the structure of P3-type K0.71[Cr_(0.75)Ti_(0.25)]O_(2) under the same conditions.Furthermore,even at the high current density of 788 mA g^(−1),the specific capacity of P3-type K0.71[Cr_(0.75)Ti_(0.25)]O_(2) is∼120 mAh g^(−1),which is∼81 times larger than that of the pristine P3-type KxCrO_(2).It is believed that this research can provide an effective strategy to improve the electrochemical performances of the cathode materials suffered by severe structural change that occurred during charge/discharge under not only K-ion battery system but also other rechargeable battery systems. 展开更多
关键词 cathodes first-principles calculations layered-type oxide materials potassium-ion batteries structural stabilization
下载PDF
Stability-Considered Lane Keeping Control of Commercial Vehicles Based on Improved APF Algorithm
17
作者 Bin Tang Zhengyi Yang +3 位作者 Haobin Jiang Ziyan Lin Zhanxiang Xu Zitian Hu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期114-129,共16页
Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase... Regarding the lane keeping system,path tracking accuracy and lateral stability at high speeds need to be taken into account especially for commercial vehicles due to the characteristics of larger mass,longer wheelbase and higher mass center.To improve the performance mentioned above comprehensively,the control strategy based on improved artificial potential field(APF)algorithm is proposed.In the paper,time to lane crossing(TLC)is introduced into the potential field function to enhance the accuracy of path tracking,meanwhile the vehicle dynamics parameters including yaw rate and lateral acceleration are chosen as the repulsive force field source.The lane keeping controller based on improved APF algorithm is designed and the stability of the control system is proved based on Lyapunov theory.In addition,adaptive inertial weight particle swarm optimization algorithm(AIWPSO)is applied to optimize the gain of each potential field function.The co-simulation results indicate that the comprehensive evaluation index respecting lane tracking accuracy and lateral stability is reduced remarkably.Finally,the proposed control strategy is verified by the HiL test.It provides a beneficial reference for dynamics control of commercial vehicles and enriches the theoretical development and practical application of artificial potential field method in the field of intelligent driving. 展开更多
关键词 Lane keeping control Commercial vehicles Lateral stability Artificial potential field AIWPSO
下载PDF
Stability of the Stratification of Water Bodies in the North Passage of the Yangtze River Estuary Based on the EFDC Model
18
作者 WU De’an LI Xin WANG Yigang 《Journal of Ocean University of China》 CAS CSCD 2024年第1期23-32,共10页
To study the stratified stability of a water column in the North Passage of the Yangtze River Estuary,a numerical model of the hydrodynamics of this estuary is established using the EFDC model.On the basis of EFDC res... To study the stratified stability of a water column in the North Passage of the Yangtze River Estuary,a numerical model of the hydrodynamics of this estuary is established using the EFDC model.On the basis of EFDC results,this paper derives and pro-vides the discriminative index of water body stability caused by salinity and analyzes the along-range variation in water body strati-fication stability in the North Passage of the Yangtze River Estuary and the periodic variation at a key location(bend area)based on the simulation results of the numerical model.This work shows that the water body in the bend area varies between mixed and strati-fied types,and the vertical average flow velocity has a good negative correlation with the differential velocity between the surface and bottom layers of the water body.The model simulation results validate the formulae for the stratified stability discriminant during spring tides. 展开更多
关键词 Yangtze Estuary North Passage EFDC model stratification stability salinity distribution
下载PDF
Atom substitution of the solid-state electrolyte Li_(10)GeP_(2)S_(12)for stabilized all-solid-state lithium metal batteries
19
作者 Zijing Wan Xiaozhen Chen +3 位作者 Ziqi Zhou Xiaoliang Zhong Xiaobing Luo Dongwei Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期28-38,I0002,共12页
Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical applicati... Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes. 展开更多
关键词 Atom substitution Solid-state electrolyte Machine learning stabilized interface
下载PDF
Nonlinear robust adaptive control for bidirectional stabilization system of all-electric tank with unknown actuator backlash compensation and disturbance estimation
20
作者 Shusen Yuan Wenxiang Deng +1 位作者 Jianyong Yao Guolai Yang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期144-158,共15页
Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate trackin... Since backlash nonlinearity is inevitably existing in actuators for bidirectional stabilization system of allelectric tank,it behaves more drastically in high maneuvering environments.In this work,the accurate tracking control for bidirectional stabilization system of moving all-electric tank with actuator backlash and unmodeled disturbance is solved.By utilizing the smooth adaptive backlash inverse model,a nonlinear robust adaptive feedback control scheme is presented.The unknown parameters and unmodelled disturbance are addressed separately through the derived parametric adaptive function and the continuous nonlinear robust term.Because the unknown backlash parameters are updated via adaptive function and the backlash effect can be suppressed successfully by inverse operation,which ensures the system stability.Meanwhile,the system disturbance in the high maneuverable environment can be estimated with the constructed adaptive law online improving the engineering practicality.Finally,Lyapunov-based analysis proves that the developed controller can ensure the tracking error asymptotically converges to zero even with unmodeled disturbance and unknown actuator backlash.Contrast co-simulations and experiments illustrate the advantages of the proposed approach. 展开更多
关键词 Bidirectional stabilization system Robust control Adaptive control Backlash inverse Disturbance estimation
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部