Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduct...Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduction method was used to study the deep anti-sliding stability of a high gravity dam with a complex dam foundation in response to strong earthquake-induced ground action. Based on static anti-sliding stability analysis of the dam foundation undertaken by decreasing the shear strength parameters of the rock mass in equal proportion, the seismic time history analysis was carried out. The proposed instability criterion for the dynamic strength reduction method was that the peak values of dynamic displacements and plastic strain energy change suddenly with the increase of the strength reduction factor. The elasto-plastic behavior of the dam foundation was idealized using the Drucker-Prager yield criterion based on the associated flow rule assumption. The result of elasto-plastic time history analysis of an overflow dam monolith based on the dynamic strength reduction method was compared with that of the dynamic linear elastic analysis, and the reliability of elasto-plastic time history analysis was confirmed. The results also show that the safety factors of the dam-foundation system in the static and dynamic cases are 3.25 and 3.0, respectively, and that the F2 fault has a significant influence on the anti-sliding stability of the high gravity dam. It is also concluded that the proposed instability criterion for the dynamic strength reduction method is feasible.展开更多
Based on the design principles of economic rationality and safety,multiple-pivot pile anchorage approach was used as the supporting engineering of a tall building with a deep foundation ditch.The designs,such as ancho...Based on the design principles of economic rationality and safety,multiple-pivot pile anchorage approach was used as the supporting engineering of a tall building with a deep foundation ditch.The designs,such as anchor arm,single pile and the whole,were set up in accordance with the calculations of the internal force from the equivalent beam and Yamagata Kunio methods.Moreover,the rationality of the design was estimated using the stability checks.FLAC3D was used for calculating the accuracy of the design.Using FLAC3D to simulating ditch cutting and supporting processes can obtain the equivalent results as the theory analysis in the displacement of ditch surrounding wall,the stress field and stress distribution.展开更多
The space effects of deep pit slope are analyzed by an elastic mechanics principle. The interaction among the critical slide angle, the friction coefficient, the cohesion, and the horizontal radius of the deep pits is...The space effects of deep pit slope are analyzed by an elastic mechanics principle. The interaction among the critical slide angle, the friction coefficient, the cohesion, and the horizontal radius of the deep pits is derived in this paper. It indicates that the deeper the pit is excavated, the greater the critical slide angle is. Both the theory for reducing stripping waste rock in deep pit and the approach to determining the configuration of the stable slope are developed from the interaction. The theory in this paper comprises the preceding principles of stability analysis of slopes and is suitable for analyzing that of deep pit.展开更多
基金supported by the National Basic Research Program of China (973 Program,Grant No.2007CB714104)the National Natural Science Foundation of China (Grant No. 50779011)the Innovative Project for Graduate Students of Jiangsu Province (Grant No. CX09B_155Z)
文摘Considering that there are some limitations in analyzing the anti-sliding seismic stability of dam-foundation systems with the traditional pseudo-static method and response spectrum method, the dynamic strength reduction method was used to study the deep anti-sliding stability of a high gravity dam with a complex dam foundation in response to strong earthquake-induced ground action. Based on static anti-sliding stability analysis of the dam foundation undertaken by decreasing the shear strength parameters of the rock mass in equal proportion, the seismic time history analysis was carried out. The proposed instability criterion for the dynamic strength reduction method was that the peak values of dynamic displacements and plastic strain energy change suddenly with the increase of the strength reduction factor. The elasto-plastic behavior of the dam foundation was idealized using the Drucker-Prager yield criterion based on the associated flow rule assumption. The result of elasto-plastic time history analysis of an overflow dam monolith based on the dynamic strength reduction method was compared with that of the dynamic linear elastic analysis, and the reliability of elasto-plastic time history analysis was confirmed. The results also show that the safety factors of the dam-foundation system in the static and dynamic cases are 3.25 and 3.0, respectively, and that the F2 fault has a significant influence on the anti-sliding stability of the high gravity dam. It is also concluded that the proposed instability criterion for the dynamic strength reduction method is feasible.
基金Supported by Project of the National High Technology Research and Development Program of China(No.2003AA602250)
文摘Based on the design principles of economic rationality and safety,multiple-pivot pile anchorage approach was used as the supporting engineering of a tall building with a deep foundation ditch.The designs,such as anchor arm,single pile and the whole,were set up in accordance with the calculations of the internal force from the equivalent beam and Yamagata Kunio methods.Moreover,the rationality of the design was estimated using the stability checks.FLAC3D was used for calculating the accuracy of the design.Using FLAC3D to simulating ditch cutting and supporting processes can obtain the equivalent results as the theory analysis in the displacement of ditch surrounding wall,the stress field and stress distribution.
文摘The space effects of deep pit slope are analyzed by an elastic mechanics principle. The interaction among the critical slide angle, the friction coefficient, the cohesion, and the horizontal radius of the deep pits is derived in this paper. It indicates that the deeper the pit is excavated, the greater the critical slide angle is. Both the theory for reducing stripping waste rock in deep pit and the approach to determining the configuration of the stable slope are developed from the interaction. The theory in this paper comprises the preceding principles of stability analysis of slopes and is suitable for analyzing that of deep pit.