期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Seismic stability of reinforced soil walls under bearing capacity failure by pseudo-dynamic method 被引量:6
1
作者 阮晓波 孙树林 《Journal of Central South University》 SCIE EI CAS 2013年第9期2593-2598,共6页
In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by c... In order to evaluate the seismic stability of reinforced soil walls against bearing capacity failure,the seismic safety factor of reinforced soil walls was determined by using pseudo-dynamic method,and calculated by considering different parameters,such as horizontal and vertical seismic acceleration coefficients,ratio of reinforcement length to wall height,back fill friction angle,foundation soil friction angle,soil reinforcement interface friction angle and surcharge.The parametric study shows that the seismic safety factor increases by 24-fold when the foundation soil friction angle varies from 25°to 45°,and increases by 2-fold when the soil reinforcement interface friction angle varies from 0 to 30°.That is to say,the bigger values the foundation soil and/or soil reinforcement interface friction angles have,the safer the reinforced soil walls become in the seismic design.The results were also compared with those obtained from pseudo-static method.It is found that there is a higher value of the safety factor by the present work. 展开更多
关键词 reinforced soil walls seismic stability against bearing capacity seismic active force pseudo-dynamic method
下载PDF
Evaluation of survival stow position and stability analysis for heliostat under strong wind 被引量:1
2
作者 冯煜 陈小安 单文桃 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期3006-3017,共12页
Heliostats are sensitive to the wind load, thus as a key indicator, the study on the static and dynamic stability bearing capacity for heliostats is very important. In this work, a numerical wind tunnel was establishe... Heliostats are sensitive to the wind load, thus as a key indicator, the study on the static and dynamic stability bearing capacity for heliostats is very important. In this work, a numerical wind tunnel was established to calculate the wind load coefficients in various survival stow positions. In order to explore the best survival stow position for the heliostat under the strong wind, eigenvalue buckling analysis method was introduced to predict the critical wind load theoretically. Considering the impact of the nonlinearity and initial geometrical imperfection, the nonlinear post-buckling behaviors of the heliostat were investigated by load-displacement curves in the full equilibrium process. Eventually, combining B-R criterion with equivalent displacement principle the dynamic critical wind speed and load amplitude coefficient were evaluated. The results show that the determination for the best survival stow position is too hasty just by the wind load coefficients. The geometric nonlinearity has a great effect on the stability bearing capacity of the heliostat, while the effects of the material nonlinearity and initial geometrical imperfection are relatively small. And the heliostat is insensitive to the initial geometrical imperfection. In addition, the heliostat has the highest safety factor for wind-resistant performance in the stow position of 90-90 which can be taken as the best survival stow position. In this case, the extreme survival wind speeds for the static and dynamic stability are 150 m/s and 36 m/s, respectively. 展开更多
关键词 HELIOSTAT survival stow position stability bearing capacity strong wind
下载PDF
Flow-pipe-soil coupling mechanisms and predictions for submarine pipeline instability 被引量:7
3
作者 高福平 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第5期763-773,共11页
The stability of a submarine pipeline on the seabed concerns the flow-pipe-soil coupling, with influential factors related to the ocean waves and/or currents, the pipeline and the surrounding soils. A flow-pipe-soil c... The stability of a submarine pipeline on the seabed concerns the flow-pipe-soil coupling, with influential factors related to the ocean waves and/or currents, the pipeline and the surrounding soils. A flow-pipe-soil coupling system generally has various instability modes, including the vertical and lateral on-bottom instabilities, the tunnel-erosion of the underlying soil and the subsequent vortex-induced vibrations(VIVs) of free-spanning pipelines. This paper reviews the recent advances of the slip-line field solutions to the bearing capacity, the flow-pipe-soil coupling mechanism and the prediction for the lateral instability, the multi-physical coupling analysis of the tunnel-erosion, and the coupling mechanics between the VIVs and the local scour. It is revealed that the mechanism competition always exists among various instability modes, e.g., the competition between the lateral-instability and the tunnel-erosion. Finally, the prospects and scientific challenges for predicting the instability of a long-distance submarine pipeline are discussed in the context of the deep-water oil and gas exploitations. 展开更多
关键词 Submarine pipeline lateral stability bearing capacity vortex-induced vibration local scour fluid-structure-soil coupling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部