This paper considers Stokes and Newton iterations to solve stationary Navier- Stokes equations based on the finite element discretization. We obtain new sufficient conditions of stability and convergence for the two i...This paper considers Stokes and Newton iterations to solve stationary Navier- Stokes equations based on the finite element discretization. We obtain new sufficient conditions of stability and convergence for the two iterations. Specifically, when 0 〈 σ =N||f||-1/v2≤1/√2+1 , the Stokes iteration is stable and convergent, where N is defined in the paper. When 0 〈 σ ≤5/11, the Newton iteration is stable and convergent. This work gives a more accurate admissible range of data for stability and convergence of the two schemes, which improves the previous results. A numerical test is given to verify the theory.展开更多
Alternating direction implicit (A.D.I.) schemes have been proved valuable in the approximation of the solutions of parabolic partial differential equations in multi-dimensional space. Consider equations in the form pa...Alternating direction implicit (A.D.I.) schemes have been proved valuable in the approximation of the solutions of parabolic partial differential equations in multi-dimensional space. Consider equations in the form partial derivative u/partial derivative t - partial derivative/partial derivative x(a(x,y,t) partial derivative u/partial derivative x) - partial derivative/partial derivative y(b(x,y,t) partial derivative u partial derivative y) = f Two A.D.I. schemes, Peaceman-Rachford scheme and Douglas scheme will be studied. In the literature, stability and convergence have been analysed with Fourier Method, which cannot be extended beyond the model problem with constant coefficients. Additionally, L-2 energy method has been introduced to analyse the case of non-constant coefficients, however, the conclusions are too weak and incomplete because of the so-called 'equivalence between L-2 norm and H-1 semi-norm'. In this paper, we try to improve these conclusions by H-1 energy estimating method. The principal results are that both of the two A.D.I. schemes are absolutely stable and converge to the exact solution with error estimations O(Delta t(2) + h(2)) in discrete H-1 norm. This implies essential improvement of existing conclusions.展开更多
In this paper we make a close study of the finite analytic method by means of the maximum principles in differential equations and give the proof of the stability and convergence of the finite analytic method.
This study focuses on the urgent requirement for improved accuracy in diseasemodeling by introducing a newcomputational framework called the Hybrid SIR-Fuzzy Model.By integrating the traditional Susceptible-Infectious...This study focuses on the urgent requirement for improved accuracy in diseasemodeling by introducing a newcomputational framework called the Hybrid SIR-Fuzzy Model.By integrating the traditional Susceptible-Infectious-Recovered(SIR)modelwith fuzzy logic,ourmethod effectively addresses the complex nature of epidemic dynamics by accurately accounting for uncertainties and imprecisions in both data and model parameters.The main aim of this research is to provide a model for disease transmission using fuzzy theory,which can successfully address uncertainty in mathematical modeling.Our main emphasis is on the imprecise transmission rate parameter,utilizing a three-part description of its membership level.This enhances the representation of disease processes with greater complexity and tackles the difficulties related to quantifying uncertainty in mathematical models.We investigate equilibrium points for three separate scenarios and perform a comprehensive sensitivity analysis,providing insight into the complex correlation betweenmodel parameters and epidemic results.In order to facilitate a quantitative analysis of the fuzzy model,we propose the implementation of a resilient numerical scheme.The convergence study of the scheme demonstrates its trustworthiness,providing a conditionally positive solution,which represents a significant improvement compared to current forward Euler schemes.The numerical findings demonstrate themodel’s effectiveness in accurately representing the dynamics of disease transmission.Significantly,when the mortality coefficient rises,both the susceptible and infected populations decrease,highlighting the model’s sensitivity to important epidemiological factors.Moreover,there is a direct relationship between higher Holling type rate values and a decrease in the number of individuals who are infected,as well as an increase in the number of susceptible individuals.This correlation offers a significant understanding of how many elements affect the consequences of an epidemic.Our objective is to enhance decision-making in public health by providing a thorough quantitative analysis of the Hybrid SIR-Fuzzy Model.Our approach not only tackles the existing constraints in disease modeling,but also paves the way for additional investigation,providing a vital instrument for researchers and policymakers alike.展开更多
In this paper, an efficient numerical method is proposed to solve the Caputo-Riesz fractional diffusion equation with fractional Robin boundary conditions. We approximate the Riesz space fractional derivatives using t...In this paper, an efficient numerical method is proposed to solve the Caputo-Riesz fractional diffusion equation with fractional Robin boundary conditions. We approximate the Riesz space fractional derivatives using the fractional central difference scheme with second-order accurate. A priori estimation of the solution of the numerical scheme is given, and the stability and convergence of the numerical scheme are analyzed.Finally, a numerical example is used to verify the accuracy and efficiency of the numerical method.展开更多
The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference oper...The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.展开更多
We present a numerical study of the long time behavior of approxima- tion solution to the Extended Fisher-Kolmogorov equation with periodic boundary conditions. The unique solvability of numerical solution is shown. I...We present a numerical study of the long time behavior of approxima- tion solution to the Extended Fisher-Kolmogorov equation with periodic boundary conditions. The unique solvability of numerical solution is shown. It is proved that there exists a global attractor of the discrete dynamical system. Furthermore, we obtain the long-time stability and convergence of the difference scheme and the upper semicontinuity d(Ah,τ, .A) → O. Our results show that the difference scheme can effectively simulate the infinite dimensional dynamical systems.展开更多
In this paper,the convergence and stability of the ’Leap-frog’ finite difference scheme for the semilinear wave equation are proved by using of the bounded extensive method under more generalized condition for the n...In this paper,the convergence and stability of the ’Leap-frog’ finite difference scheme for the semilinear wave equation are proved by using of the bounded extensive method under more generalized condition for the nonlinear term. The more complex standard a priori estimates are avoided so that the theoretical results are complemented for the scheme which was presented by Perring and Skyrne (1962).展开更多
In the present paper,the numerical solution of It?type stochastic parabolic equation with a timewhite noise process is imparted based on a stochastic finite difference scheme.At the beginning,an implicit stochastic fi...In the present paper,the numerical solution of It?type stochastic parabolic equation with a timewhite noise process is imparted based on a stochastic finite difference scheme.At the beginning,an implicit stochastic finite difference scheme is presented for this equation.Some mathematical analyses of the scheme are then discussed.Lastly,to ascertain the efficacy and accuracy of the suggested technique,the numerical results are discussed and compared with the exact solution.展开更多
An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for ...An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for two special cases, i.e., a continued seep- age flow with a monotone percolation coefficient and a seepage flow with the fractional Neumann boundary condition. The accuracy and efficiency of the method are checked with two numerical examples.展开更多
In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz c...In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition.The order of convergence is obtained.Moreover,we show that the truncated EM method can preserve the exponential mean square stability of SDEPCAs.Numerical examples are provided to support our conclusions.展开更多
This paper considers the one-dimensional dissipative cubic nonlinear SchrSdinger equation with zero Dirichlet boundary conditions on a bounded domain. The equation is discretized in time by a linear implicit three-lev...This paper considers the one-dimensional dissipative cubic nonlinear SchrSdinger equation with zero Dirichlet boundary conditions on a bounded domain. The equation is discretized in time by a linear implicit three-level central difference scheme, which has analogous discrete conservation laws of charge and energy. The convergence with two orders and the stability of the scheme are analysed using a priori estimates. Numerical tests show that the three-level scheme is more efficient.展开更多
In this paper, we present two second-order numerical schemes to solve the fourth order parabolic equation derived from a diffuse interface model with Peng-Robinson Equation of state (EOS) for pure substance. The mas...In this paper, we present two second-order numerical schemes to solve the fourth order parabolic equation derived from a diffuse interface model with Peng-Robinson Equation of state (EOS) for pure substance. The mass conservation, energy decay property, unique solvability and L~ convergence of these two schemes are proved. Numerical results demon- strate the good approximation of the fourth order equation and confirm reliability of these two schemes.展开更多
In this paper,a second-order fnite-diference scheme is investigated for time-dependent space fractional difusion equations with variable coefcients.In the presented scheme,the Crank-Nicolson temporal discretization an...In this paper,a second-order fnite-diference scheme is investigated for time-dependent space fractional difusion equations with variable coefcients.In the presented scheme,the Crank-Nicolson temporal discretization and a second-order weighted-and-shifted Grünwald-Letnikov spatial discretization are employed.Theoretically,the unconditional stability and the second-order convergence in time and space of the proposed scheme are established under some conditions on the variable coefcients.Moreover,a Toeplitz preconditioner is proposed for linear systems arising from the proposed scheme.The condition number of the preconditioned matrix is proven to be bounded by a constant independent of the discretization step-sizes,so that the Krylov subspace solver for the preconditioned linear systems converges linearly.Numerical results are reported to show the convergence rate and the efciency of the proposed scheme.展开更多
This article proposes a high-order numerical method for a space distributed-order time-fractional diffusion equation.First,we use the mid-point quadrature rule to transform the space distributed-order term into multi-...This article proposes a high-order numerical method for a space distributed-order time-fractional diffusion equation.First,we use the mid-point quadrature rule to transform the space distributed-order term into multi-term fractional derivatives.Second,based on the piecewise-quadratic polynomials,we construct the nodal basis functions,and then discretize the multi-term fractional equation by the finite volume method.For the time-fractional derivative,the finite difference method is used.Finally,the iterative scheme is proved to be unconditionally stable and convergent with the accuracy O(σ^(2)+τ^(2-β)+h^(3)),whereτand h are the time step size and the space step size,respectively.A numerical example is presented to verify the effectiveness of the proposed method.展开更多
This paper concerns the problem of stabilizing fuzzy chaotic systems via the viewpoint of the edgewise subdivision approach. Firstly, a new edgewise subdivision algorithm is proposed to implement the simplex edgewise ...This paper concerns the problem of stabilizing fuzzy chaotic systems via the viewpoint of the edgewise subdivision approach. Firstly, a new edgewise subdivision algorithm is proposed to implement the simplex edgewise subdivision which divides the overall fuzzy chaotic systems into a lot of sub-systems by a kind of algebraic description. These sub-systems have the same volume and shape characteristics. Secondly, a novel kind of control scheme which switches by the transfer of different operating sub-systems is proposed to achieve convergent stabilization conditions for the underlying controlled fuzzy chaotic systems. Finally, a numerical example is given to demonstrate the validity of the proposed methods.展开更多
An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete alg...An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete algebraic equations are established and are solved by an iterative algorithm. Convergence of the iterative algorithm is discussed. Shifted and scaled basis functions are incorporated into the method to guarantee convergence and stability of numerical results. Numerical examples are presented to demonstrate the high convergence rate and high computational accuracy of the method.展开更多
In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also...In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also provide the theoretical analysis of the existence, uniqueness, stability, and convergence of the stabilized MFE solutions for the stabilized MFE formulation.展开更多
In this work,we analyze the three-step backward differentiation formula(BDF3)method for solving the Allen-Cahn equation on variable grids.For BDF2 method,the discrete orthogonal convolution(DOC)kernels are positive,th...In this work,we analyze the three-step backward differentiation formula(BDF3)method for solving the Allen-Cahn equation on variable grids.For BDF2 method,the discrete orthogonal convolution(DOC)kernels are positive,the stability and convergence analysis are well established in[Liao and Zhang,Math.Comp.,90(2021),1207–1226]and[Chen,Yu,and Zhang,arXiv:2108.02910,2021].However,the numerical analysis for BDF3 method with variable steps seems to be highly nontrivial due to the additional degrees of freedom and the non-positivity of DOC kernels.By developing a novel spectral norm inequality,the unconditional stability and convergence are rigorously proved under the updated step ratio restriction rk:=τk/τk−1≤1.405 for BDF3 method.Finally,numerical experiments are performed to illustrate the theoretical results.To the best of our knowledge,this is the first theoretical analysis of variable steps BDF3 method for the Allen-Cahn equation.展开更多
This is one of our series works on discrete energy analysis of the variable-step BDF schemes.In this part,we present stability and convergence analysis of the third-order BDF(BDF3)schemes with variable steps for linea...This is one of our series works on discrete energy analysis of the variable-step BDF schemes.In this part,we present stability and convergence analysis of the third-order BDF(BDF3)schemes with variable steps for linear diffusion equations,see,e.g.,[SIAM J.Numer.Anal.,58:2294-2314]and[Math.Comp.,90:1207-1226]for our previous works on the BDF2 scheme.To this aim,we first build up a discrete gradient structure of the variable-step BDF3 formula under the condition that the adjacent step ratios are less than 1.4877,by which we can establish a discrete energy dissipation law.Mesh-robust stability and convergence analysis in the L^(2) norm are then obtained.Here the mesh robustness means that the solution errors are well controlled by the maximum time-step size but independent of the adjacent time-step ratios.We also present numerical tests to support our theoretical results.展开更多
基金supported by the National Natural Science Foundation of China(No.11271298)
文摘This paper considers Stokes and Newton iterations to solve stationary Navier- Stokes equations based on the finite element discretization. We obtain new sufficient conditions of stability and convergence for the two iterations. Specifically, when 0 〈 σ =N||f||-1/v2≤1/√2+1 , the Stokes iteration is stable and convergent, where N is defined in the paper. When 0 〈 σ ≤5/11, the Newton iteration is stable and convergent. This work gives a more accurate admissible range of data for stability and convergence of the two schemes, which improves the previous results. A numerical test is given to verify the theory.
文摘Alternating direction implicit (A.D.I.) schemes have been proved valuable in the approximation of the solutions of parabolic partial differential equations in multi-dimensional space. Consider equations in the form partial derivative u/partial derivative t - partial derivative/partial derivative x(a(x,y,t) partial derivative u/partial derivative x) - partial derivative/partial derivative y(b(x,y,t) partial derivative u partial derivative y) = f Two A.D.I. schemes, Peaceman-Rachford scheme and Douglas scheme will be studied. In the literature, stability and convergence have been analysed with Fourier Method, which cannot be extended beyond the model problem with constant coefficients. Additionally, L-2 energy method has been introduced to analyse the case of non-constant coefficients, however, the conclusions are too weak and incomplete because of the so-called 'equivalence between L-2 norm and H-1 semi-norm'. In this paper, we try to improve these conclusions by H-1 energy estimating method. The principal results are that both of the two A.D.I. schemes are absolutely stable and converge to the exact solution with error estimations O(Delta t(2) + h(2)) in discrete H-1 norm. This implies essential improvement of existing conclusions.
文摘In this paper we make a close study of the finite analytic method by means of the maximum principles in differential equations and give the proof of the stability and convergence of the finite analytic method.
文摘This study focuses on the urgent requirement for improved accuracy in diseasemodeling by introducing a newcomputational framework called the Hybrid SIR-Fuzzy Model.By integrating the traditional Susceptible-Infectious-Recovered(SIR)modelwith fuzzy logic,ourmethod effectively addresses the complex nature of epidemic dynamics by accurately accounting for uncertainties and imprecisions in both data and model parameters.The main aim of this research is to provide a model for disease transmission using fuzzy theory,which can successfully address uncertainty in mathematical modeling.Our main emphasis is on the imprecise transmission rate parameter,utilizing a three-part description of its membership level.This enhances the representation of disease processes with greater complexity and tackles the difficulties related to quantifying uncertainty in mathematical models.We investigate equilibrium points for three separate scenarios and perform a comprehensive sensitivity analysis,providing insight into the complex correlation betweenmodel parameters and epidemic results.In order to facilitate a quantitative analysis of the fuzzy model,we propose the implementation of a resilient numerical scheme.The convergence study of the scheme demonstrates its trustworthiness,providing a conditionally positive solution,which represents a significant improvement compared to current forward Euler schemes.The numerical findings demonstrate themodel’s effectiveness in accurately representing the dynamics of disease transmission.Significantly,when the mortality coefficient rises,both the susceptible and infected populations decrease,highlighting the model’s sensitivity to important epidemiological factors.Moreover,there is a direct relationship between higher Holling type rate values and a decrease in the number of individuals who are infected,as well as an increase in the number of susceptible individuals.This correlation offers a significant understanding of how many elements affect the consequences of an epidemic.Our objective is to enhance decision-making in public health by providing a thorough quantitative analysis of the Hybrid SIR-Fuzzy Model.Our approach not only tackles the existing constraints in disease modeling,but also paves the way for additional investigation,providing a vital instrument for researchers and policymakers alike.
基金Supported by National Natural Science Foundation of China(Grant No.11271141)。
文摘In this paper, an efficient numerical method is proposed to solve the Caputo-Riesz fractional diffusion equation with fractional Robin boundary conditions. We approximate the Riesz space fractional derivatives using the fractional central difference scheme with second-order accurate. A priori estimation of the solution of the numerical scheme is given, and the stability and convergence of the numerical scheme are analyzed.Finally, a numerical example is used to verify the accuracy and efficiency of the numerical method.
文摘The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective.
基金The NSF (10871055) of Chinathe Fundamental Research Funds (HEUCFL20111102)for the Central Universities
文摘We present a numerical study of the long time behavior of approxima- tion solution to the Extended Fisher-Kolmogorov equation with periodic boundary conditions. The unique solvability of numerical solution is shown. It is proved that there exists a global attractor of the discrete dynamical system. Furthermore, we obtain the long-time stability and convergence of the difference scheme and the upper semicontinuity d(Ah,τ, .A) → O. Our results show that the difference scheme can effectively simulate the infinite dimensional dynamical systems.
文摘In this paper,the convergence and stability of the ’Leap-frog’ finite difference scheme for the semilinear wave equation are proved by using of the bounded extensive method under more generalized condition for the nonlinear term. The more complex standard a priori estimates are avoided so that the theoretical results are complemented for the scheme which was presented by Perring and Skyrne (1962).
文摘In the present paper,the numerical solution of It?type stochastic parabolic equation with a timewhite noise process is imparted based on a stochastic finite difference scheme.At the beginning,an implicit stochastic finite difference scheme is presented for this equation.Some mathematical analyses of the scheme are then discussed.Lastly,to ascertain the efficacy and accuracy of the suggested technique,the numerical results are discussed and compared with the exact solution.
基金supported by the National Natural Science Foundation of China(Nos.11171193 and11371229)the Natural Science Foundation of Shandong Province(No.ZR2014AM033)the Science and Technology Development Project of Shandong Province(No.2012GGB01198)
文摘An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for two special cases, i.e., a continued seep- age flow with a monotone percolation coefficient and a seepage flow with the fractional Neumann boundary condition. The accuracy and efficiency of the method are checked with two numerical examples.
基金This work is supported by the National Natural Science Foundation of China(No.11671113)the National Postdoctoral Program for Innovative Talents(No.BX20180347).
文摘In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition.The order of convergence is obtained.Moreover,we show that the truncated EM method can preserve the exponential mean square stability of SDEPCAs.Numerical examples are provided to support our conclusions.
文摘This paper considers the one-dimensional dissipative cubic nonlinear SchrSdinger equation with zero Dirichlet boundary conditions on a bounded domain. The equation is discretized in time by a linear implicit three-level central difference scheme, which has analogous discrete conservation laws of charge and energy. The convergence with two orders and the stability of the scheme are analysed using a priori estimates. Numerical tests show that the three-level scheme is more efficient.
文摘In this paper, we present two second-order numerical schemes to solve the fourth order parabolic equation derived from a diffuse interface model with Peng-Robinson Equation of state (EOS) for pure substance. The mass conservation, energy decay property, unique solvability and L~ convergence of these two schemes are proved. Numerical results demon- strate the good approximation of the fourth order equation and confirm reliability of these two schemes.
基金This research was supported by research Grants,12306616,12200317,12300519,12300218 from HKRGC GRF,11801479 from NSFC,MYRG2018-00015-FST from University of Macao,and 0118/2018/A3 from FDCT of Macao,Macao Science and Technology Development Fund 0005/2019/A,050/2017/Athe Grant MYRG2017-00098-FST and MYRG2018-00047-FST from University of Macao.S。
文摘In this paper,a second-order fnite-diference scheme is investigated for time-dependent space fractional difusion equations with variable coefcients.In the presented scheme,the Crank-Nicolson temporal discretization and a second-order weighted-and-shifted Grünwald-Letnikov spatial discretization are employed.Theoretically,the unconditional stability and the second-order convergence in time and space of the proposed scheme are established under some conditions on the variable coefcients.Moreover,a Toeplitz preconditioner is proposed for linear systems arising from the proposed scheme.The condition number of the preconditioned matrix is proven to be bounded by a constant independent of the discretization step-sizes,so that the Krylov subspace solver for the preconditioned linear systems converges linearly.Numerical results are reported to show the convergence rate and the efciency of the proposed scheme.
基金supported by the Natural and Science Foundation Council of China(11771059)Hunan Provincial Natural Science Foundation of China(2018JJ3519)Scientific Research Project of Hunan Provincial office of Education(20A022)。
文摘This article proposes a high-order numerical method for a space distributed-order time-fractional diffusion equation.First,we use the mid-point quadrature rule to transform the space distributed-order term into multi-term fractional derivatives.Second,based on the piecewise-quadratic polynomials,we construct the nodal basis functions,and then discretize the multi-term fractional equation by the finite volume method.For the time-fractional derivative,the finite difference method is used.Finally,the iterative scheme is proved to be unconditionally stable and convergent with the accuracy O(σ^(2)+τ^(2-β)+h^(3)),whereτand h are the time step size and the space step size,respectively.A numerical example is presented to verify the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.50977008,60774048 and 60821063)the Program for Cheung Kong Scholars and National Basic Research Program of China (Grant No.2009CB320601)
文摘This paper concerns the problem of stabilizing fuzzy chaotic systems via the viewpoint of the edgewise subdivision approach. Firstly, a new edgewise subdivision algorithm is proposed to implement the simplex edgewise subdivision which divides the overall fuzzy chaotic systems into a lot of sub-systems by a kind of algebraic description. These sub-systems have the same volume and shape characteristics. Secondly, a novel kind of control scheme which switches by the transfer of different operating sub-systems is proposed to achieve convergent stabilization conditions for the underlying controlled fuzzy chaotic systems. Finally, a numerical example is given to demonstrate the validity of the proposed methods.
基金Project supported by the National Natural Science Foundation of China(Grant No.11971085)the Fund from the Chongqing Municipal Education Commission,China(Grant Nos.KJZD-M201800501 and CXQT19018)the Chongqing Research Program of Basic Research and Frontier Technology,China(Grant No.cstc2018jcyjAX0266)。
文摘An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete algebraic equations are established and are solved by an iterative algorithm. Convergence of the iterative algorithm is discussed. Shifted and scaled basis functions are incorporated into the method to guarantee convergence and stability of numerical results. Numerical examples are presented to demonstrate the high convergence rate and high computational accuracy of the method.
基金supported by the National Science Foundation of China(11271127)Science Research Project of Guizhou Province Education Department(QJHKYZ[2013]207)
文摘In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also provide the theoretical analysis of the existence, uniqueness, stability, and convergence of the stabilized MFE solutions for the stabilized MFE formulation.
基金supported by the Science Fund for Distinguished Young Scholars of Gansu Province(Grant No.23JRRA1020)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2023-06).
文摘In this work,we analyze the three-step backward differentiation formula(BDF3)method for solving the Allen-Cahn equation on variable grids.For BDF2 method,the discrete orthogonal convolution(DOC)kernels are positive,the stability and convergence analysis are well established in[Liao and Zhang,Math.Comp.,90(2021),1207–1226]and[Chen,Yu,and Zhang,arXiv:2108.02910,2021].However,the numerical analysis for BDF3 method with variable steps seems to be highly nontrivial due to the additional degrees of freedom and the non-positivity of DOC kernels.By developing a novel spectral norm inequality,the unconditional stability and convergence are rigorously proved under the updated step ratio restriction rk:=τk/τk−1≤1.405 for BDF3 method.Finally,numerical experiments are performed to illustrate the theoretical results.To the best of our knowledge,this is the first theoretical analysis of variable steps BDF3 method for the Allen-Cahn equation.
基金supported by NSF of China under grant number 12071216supported by NNW2018-ZT4A06 project+1 种基金supported by NSF of China under grant numbers 12288201youth innovation promotion association(CAS).
文摘This is one of our series works on discrete energy analysis of the variable-step BDF schemes.In this part,we present stability and convergence analysis of the third-order BDF(BDF3)schemes with variable steps for linear diffusion equations,see,e.g.,[SIAM J.Numer.Anal.,58:2294-2314]and[Math.Comp.,90:1207-1226]for our previous works on the BDF2 scheme.To this aim,we first build up a discrete gradient structure of the variable-step BDF3 formula under the condition that the adjacent step ratios are less than 1.4877,by which we can establish a discrete energy dissipation law.Mesh-robust stability and convergence analysis in the L^(2) norm are then obtained.Here the mesh robustness means that the solution errors are well controlled by the maximum time-step size but independent of the adjacent time-step ratios.We also present numerical tests to support our theoretical results.