期刊文献+
共找到37篇文章
< 1 2 >
每页显示 20 50 100
New conditions of stability and convergence of Stokes and Newton iterations for Navier-Stokes equations
1
作者 Guodong ZHANG Xiaojing DONG +1 位作者 Yongzheng AN Hong LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第7期863-872,共10页
This paper considers Stokes and Newton iterations to solve stationary Navier- Stokes equations based on the finite element discretization. We obtain new sufficient conditions of stability and convergence for the two i... This paper considers Stokes and Newton iterations to solve stationary Navier- Stokes equations based on the finite element discretization. We obtain new sufficient conditions of stability and convergence for the two iterations. Specifically, when 0 〈 σ =N||f||-1/v2≤1/√2+1 , the Stokes iteration is stable and convergent, where N is defined in the paper. When 0 〈 σ ≤5/11, the Newton iteration is stable and convergent. This work gives a more accurate admissible range of data for stability and convergence of the two schemes, which improves the previous results. A numerical test is given to verify the theory. 展开更多
关键词 Navier-Stokes equation Stokes iteration Newton iteration stability convergence
下载PDF
IMPROVEMENT ON STABILITY AND CONVERGENCE OF A. D. I. SCHEMES
2
作者 程爱杰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1999年第1期76-83,共8页
Alternating direction implicit (A.D.I.) schemes have been proved valuable in the approximation of the solutions of parabolic partial differential equations in multi-dimensional space. Consider equations in the form pa... Alternating direction implicit (A.D.I.) schemes have been proved valuable in the approximation of the solutions of parabolic partial differential equations in multi-dimensional space. Consider equations in the form partial derivative u/partial derivative t - partial derivative/partial derivative x(a(x,y,t) partial derivative u/partial derivative x) - partial derivative/partial derivative y(b(x,y,t) partial derivative u partial derivative y) = f Two A.D.I. schemes, Peaceman-Rachford scheme and Douglas scheme will be studied. In the literature, stability and convergence have been analysed with Fourier Method, which cannot be extended beyond the model problem with constant coefficients. Additionally, L-2 energy method has been introduced to analyse the case of non-constant coefficients, however, the conclusions are too weak and incomplete because of the so-called 'equivalence between L-2 norm and H-1 semi-norm'. In this paper, we try to improve these conclusions by H-1 energy estimating method. The principal results are that both of the two A.D.I. schemes are absolutely stable and converge to the exact solution with error estimations O(Delta t(2) + h(2)) in discrete H-1 norm. This implies essential improvement of existing conclusions. 展开更多
关键词 P-R scheme Douglas scheme parabolic partial differential equation variable coefficient H-1 energy estimating method stability and convergence
下载PDF
THE STABILITY AND CONVERGENCE OF THE FINITE ANALYTIC METHOD FOR THE NUMERICAL SOLUTION OF CONVECTIVE DIFFUSION EQUATION
3
作者 孙毓平 吴江航 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第6期521-528,共8页
In this paper we make a close study of the finite analytic method by means of the maximum principles in differential equations and give the proof of the stability and convergence of the finite analytic method.
关键词 THE stability AND convergence OF THE FINITE ANALYTIC METHOD FOR THE NUMERICAL SOLUTION OF CONVECTIVE DIFFUSION EQUATION
下载PDF
A Hybrid SIR-Fuzzy Model for Epidemic Dynamics:A Numerical Study
4
作者 Muhammad Shoaib Arif Kamaleldin Abodayeh Yasir Nawaz 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3417-3434,共18页
This study focuses on the urgent requirement for improved accuracy in diseasemodeling by introducing a newcomputational framework called the Hybrid SIR-Fuzzy Model.By integrating the traditional Susceptible-Infectious... This study focuses on the urgent requirement for improved accuracy in diseasemodeling by introducing a newcomputational framework called the Hybrid SIR-Fuzzy Model.By integrating the traditional Susceptible-Infectious-Recovered(SIR)modelwith fuzzy logic,ourmethod effectively addresses the complex nature of epidemic dynamics by accurately accounting for uncertainties and imprecisions in both data and model parameters.The main aim of this research is to provide a model for disease transmission using fuzzy theory,which can successfully address uncertainty in mathematical modeling.Our main emphasis is on the imprecise transmission rate parameter,utilizing a three-part description of its membership level.This enhances the representation of disease processes with greater complexity and tackles the difficulties related to quantifying uncertainty in mathematical models.We investigate equilibrium points for three separate scenarios and perform a comprehensive sensitivity analysis,providing insight into the complex correlation betweenmodel parameters and epidemic results.In order to facilitate a quantitative analysis of the fuzzy model,we propose the implementation of a resilient numerical scheme.The convergence study of the scheme demonstrates its trustworthiness,providing a conditionally positive solution,which represents a significant improvement compared to current forward Euler schemes.The numerical findings demonstrate themodel’s effectiveness in accurately representing the dynamics of disease transmission.Significantly,when the mortality coefficient rises,both the susceptible and infected populations decrease,highlighting the model’s sensitivity to important epidemiological factors.Moreover,there is a direct relationship between higher Holling type rate values and a decrease in the number of individuals who are infected,as well as an increase in the number of susceptible individuals.This correlation offers a significant understanding of how many elements affect the consequences of an epidemic.Our objective is to enhance decision-making in public health by providing a thorough quantitative analysis of the Hybrid SIR-Fuzzy Model.Our approach not only tackles the existing constraints in disease modeling,but also paves the way for additional investigation,providing a vital instrument for researchers and policymakers alike. 展开更多
关键词 Fuzzy-based model sensitivity equilibriumpoints proposed numerical scheme convergence and stability analysis
下载PDF
带分数阶Robin边界条件的时间-空间分数阶扩散方程的有限差分方法
5
作者 唐忠华 房少梅 《Chinese Quarterly Journal of Mathematics》 2024年第1期18-30,共13页
In this paper, an efficient numerical method is proposed to solve the Caputo-Riesz fractional diffusion equation with fractional Robin boundary conditions. We approximate the Riesz space fractional derivatives using t... In this paper, an efficient numerical method is proposed to solve the Caputo-Riesz fractional diffusion equation with fractional Robin boundary conditions. We approximate the Riesz space fractional derivatives using the fractional central difference scheme with second-order accurate. A priori estimation of the solution of the numerical scheme is given, and the stability and convergence of the numerical scheme are analyzed.Finally, a numerical example is used to verify the accuracy and efficiency of the numerical method. 展开更多
关键词 Fractional boundary conditions stability and convergence Caputo-Riesz fractional diffusion equation
下载PDF
Crank-Nicolson Quasi-Compact Scheme for the Nonlinear Two-Sided Spatial Fractional Advection-Diffusion Equations
6
作者 Dechao Gao Zeshan Qiu +1 位作者 Lizan Wang Jianxin Li 《Journal of Applied Mathematics and Physics》 2024年第4期1089-1100,共12页
The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference oper... The higher-order numerical scheme of nonlinear advection-diffusion equations is studied in this article, where the space fractional derivatives are evaluated by using weighted and shifted Grünwald difference operators and combining the compact technique, in the time direction is discretized by the Crank-Nicolson method. Through the energy method, the stability and convergence of the numerical scheme in the sense of L<sub>2</sub>-norm are proved, and the convergence order is . Some examples are given to show that our numerical scheme is effective. 展开更多
关键词 Crank-Nicolson Quasi-Compact Scheme Fractional Advection-Diffusion Equations NONLINEAR stability and convergence
下载PDF
Dynamics and Long Time Convergence of the Extended Fisher-Kolmogorov Equation under Numerical Discretization
7
作者 Wang Jue Ma Fu-ming 《Communications in Mathematical Research》 CSCD 2013年第1期51-60,共10页
We present a numerical study of the long time behavior of approxima- tion solution to the Extended Fisher-Kolmogorov equation with periodic boundary conditions. The unique solvability of numerical solution is shown. I... We present a numerical study of the long time behavior of approxima- tion solution to the Extended Fisher-Kolmogorov equation with periodic boundary conditions. The unique solvability of numerical solution is shown. It is proved that there exists a global attractor of the discrete dynamical system. Furthermore, we obtain the long-time stability and convergence of the difference scheme and the upper semicontinuity d(Ah,τ, .A) → O. Our results show that the difference scheme can effectively simulate the infinite dimensional dynamical systems. 展开更多
关键词 Extended Fisher Kolmogorov equation finite difference method global attractor long time stability and convergence
下载PDF
Convergence on Finite Difference Solution for Semilinear Wave Equation in One Space Variable
8
作者 鲁百年 房少梅 《Chinese Quarterly Journal of Mathematics》 CSCD 1997年第3期35-40, ,共6页
In this paper,the convergence and stability of the ’Leap-frog’ finite difference scheme for the semilinear wave equation are proved by using of the bounded extensive method under more generalized condition for the n... In this paper,the convergence and stability of the ’Leap-frog’ finite difference scheme for the semilinear wave equation are proved by using of the bounded extensive method under more generalized condition for the nonlinear term. The more complex standard a priori estimates are avoided so that the theoretical results are complemented for the scheme which was presented by Perring and Skyrne (1962). 展开更多
关键词 semilinear wave equation Leap-frog finite difference scheme convergence and stability
下载PDF
AWeighted Average Finite Difference Scheme for the Numerical Solution of Stochastic Parabolic Partial Differential Equations
9
作者 Dumitru Baleanu Mehran Namjoo +1 位作者 Ali Mohebbian Amin Jajarmi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1147-1163,共17页
In the present paper,the numerical solution of It?type stochastic parabolic equation with a timewhite noise process is imparted based on a stochastic finite difference scheme.At the beginning,an implicit stochastic fi... In the present paper,the numerical solution of It?type stochastic parabolic equation with a timewhite noise process is imparted based on a stochastic finite difference scheme.At the beginning,an implicit stochastic finite difference scheme is presented for this equation.Some mathematical analyses of the scheme are then discussed.Lastly,to ascertain the efficacy and accuracy of the suggested technique,the numerical results are discussed and compared with the exact solution. 展开更多
关键词 Itoequation stochastic process finite difference scheme stability and convergence CONSISTENCY
下载PDF
Implicit finite difference method for fractional percolation equation with Dirichlet and fractional boundary conditions 被引量:4
10
作者 Boling GUO Qiang XU Zhe YIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第3期403-416,共14页
An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for ... An implicit finite difference method is developed for a one-dimensional frac- tional percolation equation (FPE) with the Dirichlet and fractional boundary conditions. The stability and convergence are discussed for two special cases, i.e., a continued seep- age flow with a monotone percolation coefficient and a seepage flow with the fractional Neumann boundary condition. The accuracy and efficiency of the method are checked with two numerical examples. 展开更多
关键词 fractional percolation equation (FPE) Riemann-Liouville derivative frac-tional boundary condition finite difference method stability and convergence Toeplitzmatrix
下载PDF
Convergence and Stability of the Truncated Euler-Maruyama Method for Stochastic Differential Equations with Piecewise Continuous Arguments 被引量:2
11
作者 Yidan Geng Minghui Song +1 位作者 Yulan Lu Mingzhu Liu 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2021年第1期194-218,共25页
In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz c... In this paper,we develop the truncated Euler-Maruyama(EM)method for stochastic differential equations with piecewise continuous arguments(SDEPCAs),and consider the strong convergence theory under the local Lipschitz condition plus the Khasminskii-type condition.The order of convergence is obtained.Moreover,we show that the truncated EM method can preserve the exponential mean square stability of SDEPCAs.Numerical examples are provided to support our conclusions. 展开更多
关键词 Stochastic differential equations with piecewise continuous argument local Lips-chitz condition Khasminskii-type condition truncated Euler-Maruyama method convergence and stability
原文传递
A new finite difference scheme for a dissipative cubic nonlinear Schrdinger equation 被引量:2
12
作者 张荣培 蔚喜军 赵国忠 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第3期27-32,共6页
This paper considers the one-dimensional dissipative cubic nonlinear SchrSdinger equation with zero Dirichlet boundary conditions on a bounded domain. The equation is discretized in time by a linear implicit three-lev... This paper considers the one-dimensional dissipative cubic nonlinear SchrSdinger equation with zero Dirichlet boundary conditions on a bounded domain. The equation is discretized in time by a linear implicit three-level central difference scheme, which has analogous discrete conservation laws of charge and energy. The convergence with two orders and the stability of the scheme are analysed using a priori estimates. Numerical tests show that the three-level scheme is more efficient. 展开更多
关键词 dissipative cubic nonlinear Schr5dinger equation three-level finite difference convergence and stability analysis
下载PDF
STABILITY AND CONVERGENCE ANALYSIS OF SECOND-ORDER SCHEMES FOR A DIFFUSE INTERFACE MODEL WITH PENG-ROBINSON EQUATION OF STATE 被引量:1
13
作者 Qiujin Peng Zhonghua Qiao Shuyu Sun 《Journal of Computational Mathematics》 SCIE CSCD 2017年第6期737-765,共29页
In this paper, we present two second-order numerical schemes to solve the fourth order parabolic equation derived from a diffuse interface model with Peng-Robinson Equation of state (EOS) for pure substance. The mas... In this paper, we present two second-order numerical schemes to solve the fourth order parabolic equation derived from a diffuse interface model with Peng-Robinson Equation of state (EOS) for pure substance. The mass conservation, energy decay property, unique solvability and L~ convergence of these two schemes are proved. Numerical results demon- strate the good approximation of the fourth order equation and confirm reliability of these two schemes. 展开更多
关键词 Diffuse interface model Fourth order parabolic equation Energy stability convergence.
原文传递
An Efficient Second-Order Convergent Scheme for One-Side Space Fractional Diffusion Equations with Variable Coefficients 被引量:1
14
作者 Xue-lei Lin Pin Lyu +2 位作者 Michael KNg Hai-Wei Sun Seakweng Vong 《Communications on Applied Mathematics and Computation》 2020年第2期215-239,共25页
In this paper,a second-order fnite-diference scheme is investigated for time-dependent space fractional difusion equations with variable coefcients.In the presented scheme,the Crank-Nicolson temporal discretization an... In this paper,a second-order fnite-diference scheme is investigated for time-dependent space fractional difusion equations with variable coefcients.In the presented scheme,the Crank-Nicolson temporal discretization and a second-order weighted-and-shifted Grünwald-Letnikov spatial discretization are employed.Theoretically,the unconditional stability and the second-order convergence in time and space of the proposed scheme are established under some conditions on the variable coefcients.Moreover,a Toeplitz preconditioner is proposed for linear systems arising from the proposed scheme.The condition number of the preconditioned matrix is proven to be bounded by a constant independent of the discretization step-sizes,so that the Krylov subspace solver for the preconditioned linear systems converges linearly.Numerical results are reported to show the convergence rate and the efciency of the proposed scheme. 展开更多
关键词 One-side space fractional difusion equation Variable difusion coefcients stability and convergence High-order fnite-diference scheme Preconditioner
下载PDF
HIGH-ORDER NUMERICAL METHOD FOR SOLVING A SPACE DISTRIBUTED-ORDER TIME-FRACTIONAL DIFFUSION EQUATION
15
作者 Jing LI Yingying YANG +2 位作者 Yingjun JIANG Libo FENG Boling GUO 《Acta Mathematica Scientia》 SCIE CSCD 2021年第3期801-826,共26页
This article proposes a high-order numerical method for a space distributed-order time-fractional diffusion equation.First,we use the mid-point quadrature rule to transform the space distributed-order term into multi-... This article proposes a high-order numerical method for a space distributed-order time-fractional diffusion equation.First,we use the mid-point quadrature rule to transform the space distributed-order term into multi-term fractional derivatives.Second,based on the piecewise-quadratic polynomials,we construct the nodal basis functions,and then discretize the multi-term fractional equation by the finite volume method.For the time-fractional derivative,the finite difference method is used.Finally,the iterative scheme is proved to be unconditionally stable and convergent with the accuracy O(σ^(2)+τ^(2-β)+h^(3)),whereτand h are the time step size and the space step size,respectively.A numerical example is presented to verify the effectiveness of the proposed method. 展开更多
关键词 Space distributed-order equation time-fractional diffusion equation piecewise-quadratic polynomials finite volume method stability and convergence
下载PDF
Convergent robust stabilization conditions for fuzzy chaotic systems based on the edgewise subdivision approach
16
作者 张化光 解相朋 王兴元 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第6期93-100,共8页
This paper concerns the problem of stabilizing fuzzy chaotic systems via the viewpoint of the edgewise subdivision approach. Firstly, a new edgewise subdivision algorithm is proposed to implement the simplex edgewise ... This paper concerns the problem of stabilizing fuzzy chaotic systems via the viewpoint of the edgewise subdivision approach. Firstly, a new edgewise subdivision algorithm is proposed to implement the simplex edgewise subdivision which divides the overall fuzzy chaotic systems into a lot of sub-systems by a kind of algebraic description. These sub-systems have the same volume and shape characteristics. Secondly, a novel kind of control scheme which switches by the transfer of different operating sub-systems is proposed to achieve convergent stabilization conditions for the underlying controlled fuzzy chaotic systems. Finally, a numerical example is given to demonstrate the validity of the proposed methods. 展开更多
关键词 chaotic system Takagi Sugeno fuzzy model convergent stabilization conditions edgewise subdivision
下载PDF
A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
17
作者 Yu Tan Xiao-Lin Li 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期126-133,共8页
An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete alg... An improved moving least square meshless method is developed for the numerical solution of the nonlinear improved Boussinesq equation. After the approximation of temporal derivatives, nonlinear systems of discrete algebraic equations are established and are solved by an iterative algorithm. Convergence of the iterative algorithm is discussed. Shifted and scaled basis functions are incorporated into the method to guarantee convergence and stability of numerical results. Numerical examples are presented to demonstrate the high convergence rate and high computational accuracy of the method. 展开更多
关键词 MESHLESS improved moving least square approximation nonlinear improved Boussinesq equation convergence and stability
下载PDF
A STABILIZED MIXED FINITE ELEMENT FORMULATION FOR THE NON-STATIONARY INCOMPRESSIBLE BOUSSINESQ EQUATIONS
18
作者 罗振东 《Acta Mathematica Scientia》 SCIE CSCD 2016年第2期385-393,共9页
In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also... In this study, we employ mixed finite element (MFE) method, two local Gauss integrals, and parameter-free to establish a stabilized MFE formulation for the non-stationary incompressible Boussinesq equations. We also provide the theoretical analysis of the existence, uniqueness, stability, and convergence of the stabilized MFE solutions for the stabilized MFE formulation. 展开更多
关键词 Stabilized mixed finite element formulation non-stationary incompressible Boussinesq equations the existence uniqueness stability and convergence
下载PDF
VARIABLE STEP-SIZE BDF3 METHOD FOR ALLEN-CAHN EQUATION
19
作者 Minghua Chen Fan Yu +1 位作者 Qingdong Zhang Zhimin Zhang 《Journal of Computational Mathematics》 SCIE CSCD 2024年第5期1380-1406,共27页
In this work,we analyze the three-step backward differentiation formula(BDF3)method for solving the Allen-Cahn equation on variable grids.For BDF2 method,the discrete orthogonal convolution(DOC)kernels are positive,th... In this work,we analyze the three-step backward differentiation formula(BDF3)method for solving the Allen-Cahn equation on variable grids.For BDF2 method,the discrete orthogonal convolution(DOC)kernels are positive,the stability and convergence analysis are well established in[Liao and Zhang,Math.Comp.,90(2021),1207–1226]and[Chen,Yu,and Zhang,arXiv:2108.02910,2021].However,the numerical analysis for BDF3 method with variable steps seems to be highly nontrivial due to the additional degrees of freedom and the non-positivity of DOC kernels.By developing a novel spectral norm inequality,the unconditional stability and convergence are rigorously proved under the updated step ratio restriction rk:=τk/τk−1≤1.405 for BDF3 method.Finally,numerical experiments are performed to illustrate the theoretical results.To the best of our knowledge,this is the first theoretical analysis of variable steps BDF3 method for the Allen-Cahn equation. 展开更多
关键词 Variable step-size BDF3 method Allen-Cahn equation Spectral norm inequality stability and convergence analysis
原文传递
DISCRETE ENERGY ANALYSIS OF THE THIRD-ORDER VARIABLE-STEP BDF TIME-STEPPING FOR DIFFUSION EQUATIONS 被引量:2
20
作者 Hong-lin Liao Tao Tang Tao Zhou 《Journal of Computational Mathematics》 SCIE CSCD 2023年第2期325-344,共20页
This is one of our series works on discrete energy analysis of the variable-step BDF schemes.In this part,we present stability and convergence analysis of the third-order BDF(BDF3)schemes with variable steps for linea... This is one of our series works on discrete energy analysis of the variable-step BDF schemes.In this part,we present stability and convergence analysis of the third-order BDF(BDF3)schemes with variable steps for linear diffusion equations,see,e.g.,[SIAM J.Numer.Anal.,58:2294-2314]and[Math.Comp.,90:1207-1226]for our previous works on the BDF2 scheme.To this aim,we first build up a discrete gradient structure of the variable-step BDF3 formula under the condition that the adjacent step ratios are less than 1.4877,by which we can establish a discrete energy dissipation law.Mesh-robust stability and convergence analysis in the L^(2) norm are then obtained.Here the mesh robustness means that the solution errors are well controlled by the maximum time-step size but independent of the adjacent time-step ratios.We also present numerical tests to support our theoretical results. 展开更多
关键词 Diffusion equations Variable-step third-order BDF scheme Discrete gradient structure Discrete orthogonal convolution kernels stability and convergence
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部