The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been bu...The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been built in China since the 1970s, there is still a lack of experience for large-volume underground storage in complicated geological conditions. The current design concept of water curtain system and the technical instruction for system operation have limitations in maintaining the stability of surrounding rock mass during the construction of the main storage caverns, as well as the long-term stability. Although several large-scale underground oil storage projects are under construction at present in China, the design concepts and construction methods, especially for the water curtain system, are mainly based on the ideal porosity medium flow theory and the experiences gained from the similar projects overseas. The storage projects currently constructed in China have the specific features such as huge scale, large depth, multiple-level arrangement, high seepage pressure, complicated geological conditions, and high in situ stresses, which are the challenging issues for the stability of the storage caverns. Based on years’ experiences obtained from the first large-scale (millions of cubic meters) underground water-sealed oil storage project in China, some design and operation problems related to water curtain system during project construction are discussed. The drawbacks and merits of the water curtain system are also presented. As an example, the conventional concept of “filling joints with water” is widely used in many cases, as a basic concept for the design of the water curtain system, but it is immature. In this paper, the advantages and disadvantages of the conventional concept are pointed out, with respect to the long-term stability as well as the safety of construction of storage caverns. Finally, new concepts and principles for design and construction of the underground water-sealed oil storage caverns are proposed.展开更多
Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and ant...Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and anthropogenic impacts are generally reported as the most important triggering factors in the region. Following the portal slope excavations in the entrance section of Cankurtaran tunnel, located in the region, where the highly weathered andesitic tuff crops out, a circular toe failure occurred. The main target of the present study is to investigate the causes and occurrence mechanism of this failure and to determine the feasible remedial measures against it using finite element method(FEM) in four stages. These stages are slope stability analyses for pre-and postexcavation cases, and remediation design assessments for slope and tunnel. The results of the FEM-SSR analyses indicated that the insufficient initial support design and weathering of the andesitic tuffs are the main factors that caused the portal failure. After installing a rock retaining wall with jet grout columns and reinforced slope benching applications, the factor of safety increased from 0.83 to 2.80. In addition toslope stability evaluation, the Rock Mass Rating(RMR), Rock Mass Quality(Q) and New Austrian Tunneling Method(NATM) systems were also utilized as empirical methods to characterize the tunnel ground and to determine the tunnel support design. The performance of the suggested empirical support design, induced stress distributions and deformations were analyzed by means of numerical modelling. Finally, it was concluded that the recommended stabilization technique was essential for the dynamic long-term stability and prevents the effects of failure. Additionally, the FEM method gives useful and reasonably reliable results in evaluating the stability of cut slopes and tunnels excavated both in continuous and discontinuous rock masses.展开更多
文摘The underground water-sealed storage technique is critically important and generally accepted for the national energy strategy in China. Although several small underground water-sealed oil storage caverns have been built in China since the 1970s, there is still a lack of experience for large-volume underground storage in complicated geological conditions. The current design concept of water curtain system and the technical instruction for system operation have limitations in maintaining the stability of surrounding rock mass during the construction of the main storage caverns, as well as the long-term stability. Although several large-scale underground oil storage projects are under construction at present in China, the design concepts and construction methods, especially for the water curtain system, are mainly based on the ideal porosity medium flow theory and the experiences gained from the similar projects overseas. The storage projects currently constructed in China have the specific features such as huge scale, large depth, multiple-level arrangement, high seepage pressure, complicated geological conditions, and high in situ stresses, which are the challenging issues for the stability of the storage caverns. Based on years’ experiences obtained from the first large-scale (millions of cubic meters) underground water-sealed oil storage project in China, some design and operation problems related to water curtain system during project construction are discussed. The drawbacks and merits of the water curtain system are also presented. As an example, the conventional concept of “filling joints with water” is widely used in many cases, as a basic concept for the design of the water curtain system, but it is immature. In this paper, the advantages and disadvantages of the conventional concept are pointed out, with respect to the long-term stability as well as the safety of construction of storage caverns. Finally, new concepts and principles for design and construction of the underground water-sealed oil storage caverns are proposed.
文摘Mass movements are very common problems in the eastern Black Sea region of Turkey due to its climate conditions, geological, and geomorphological characteristics. High slope angle, weathering, dense rainfalls, and anthropogenic impacts are generally reported as the most important triggering factors in the region. Following the portal slope excavations in the entrance section of Cankurtaran tunnel, located in the region, where the highly weathered andesitic tuff crops out, a circular toe failure occurred. The main target of the present study is to investigate the causes and occurrence mechanism of this failure and to determine the feasible remedial measures against it using finite element method(FEM) in four stages. These stages are slope stability analyses for pre-and postexcavation cases, and remediation design assessments for slope and tunnel. The results of the FEM-SSR analyses indicated that the insufficient initial support design and weathering of the andesitic tuffs are the main factors that caused the portal failure. After installing a rock retaining wall with jet grout columns and reinforced slope benching applications, the factor of safety increased from 0.83 to 2.80. In addition toslope stability evaluation, the Rock Mass Rating(RMR), Rock Mass Quality(Q) and New Austrian Tunneling Method(NATM) systems were also utilized as empirical methods to characterize the tunnel ground and to determine the tunnel support design. The performance of the suggested empirical support design, induced stress distributions and deformations were analyzed by means of numerical modelling. Finally, it was concluded that the recommended stabilization technique was essential for the dynamic long-term stability and prevents the effects of failure. Additionally, the FEM method gives useful and reasonably reliable results in evaluating the stability of cut slopes and tunnels excavated both in continuous and discontinuous rock masses.