Two new hereditary classes of P 5-free graphs where the stability number can be found in polynomial time are proposed.They generalize several known results.
Based on strength reduction theory,the stability numbers of shallow tunnels were investigated within the framework of upper and lower bound theorems of limit analysis. Stability solutions taking into account of water ...Based on strength reduction theory,the stability numbers of shallow tunnels were investigated within the framework of upper and lower bound theorems of limit analysis. Stability solutions taking into account of water seepage were presented and compared with those without considering seepage. The comparisons indicate that the maximum difference does not exceed 3.7%,which proves the present method credible. The results show that stability numbers of shallow tunnels considering seepage are much less than those without considering seepage,and that the difference of stability numbers between considering seepage and without considering seepage increase with increasing the depth ratio. The stability numbers decrease with increasing permeability coefficient and groundwater depth. Seepage has significant effects on the stability numbers of shallow tunnels.展开更多
The strength of geomaterials is typically predicted by the Mohr-Coulomb yield criterion in slope stability analysis.The tensile strength of soils in this yield criterion,which is an extrapolation of the triaxial compr...The strength of geomaterials is typically predicted by the Mohr-Coulomb yield criterion in slope stability analysis.The tensile strength of soils in this yield criterion,which is an extrapolation of the triaxial compression test results,is usually overestimated.Generally,the influences of tensile stresses in slopes are evaluated by two approaches:1)introducing cracks to eliminate the tensile stresses in slopes,and 2)truncating the strength envelope to reduce the tensile strength of the soils.However,comparative analyses of the two approaches have not been fully implemented,especially under dynamic conditions.In this study,three slope failure mechanisms corresponding to the predictions of slope stability by the mentioned two approaches subjected to seismic loadings are systematically evaluated.The stability factor considering the pre-existing crack,crack formation,and tension cut-off are compared one another.The most unfavorable crack locations corresponding to the different mechanisms are evaluated.The influence of tensile strength on the factor of safety of slopes is estimated as well.Further,the critical acceleration and the permanent displacement of slopes with pre-existing crack,and tension cut-off are derived in the framework of the kinematic theorem of limit analysis.The vertical effects of seismic coefficient on critical acceleration and permanent displacement are discussed.Conclusions can be drawn that the consideration of tension zone effects can sharply reduce the stability factor of slopes,especially for steep slopes and large horizontal seismic loads;different from the static condition,the slope with pre-existing crack is not always the most vulnerable to collapse,the tension cut-off mechanism in steep slopes may predict the lowest stability factor.In addition,the calculation shows that an evidently increase in the slope displacement is induced by the increasing downward vertical loads,while a decrease occurs if the vertical loads are upward.展开更多
An innovational test method was developed on the basis of redefinition of the emulsion stability. The stability was characterized by relative volume percentage of disperse phase demulsified thoroughly from the top par...An innovational test method was developed on the basis of redefinition of the emulsion stability. The stability was characterized by relative volume percentage of disperse phase demulsified thoroughly from the top part and the bottom part of an emulsion sample, each weighting the same amount, after being settled for a given time at constant temperature. Three series of emulsions were prepared and tested successfully, which were emulsions of paraffin oil and water stabilized with polyoxyethylene lauryl ether series (AEO3 and AEO9) at various HLBs, and emulsions of rapeseed oil and water stablized with sorbitan monoleate (Span80) and each of polyoxyethylene (20) sorbitan carboxylic esters (Tween20, Tween40, Tween60, Tween80 and Tween85) at different HLBs. It provedthat this method is especially workable while the boundaries are opaque in a wide range of HLBs and is capable of offering an accurate optimum HLB.展开更多
Based on nonlinear Mohr-Coulomb failure criterion, the analytical solutions of stability number and supporting force on twin shallow tunnels were derived using upper bound theorem of limit analysis. The optimized solu...Based on nonlinear Mohr-Coulomb failure criterion, the analytical solutions of stability number and supporting force on twin shallow tunnels were derived using upper bound theorem of limit analysis. The optimized solutions were obtained by the technique of sequential quadratic programming. When nonlinear coefficient equals 1 and internal friction angle equals 0, the nonlinear Mohr-Coulomb failure criterion degenerates into linear failure criterion. The calculated results of stability number in this work were compared with previous results, and the agreement verifies the effectiveness of the present method. Under the condition of nonlinear Mohr-Coulomb failure criterion, the results show that the supporting force on twin shallow tunnels obviously increases when the nonlinear coefficient, burial depth, ground load or pore water pressure coefficients increase. When the clear distance is 0.5to 1.0 times the diameter of tunnel, the supporting force of twin shallow tunnels reaches its maximum value, which means that the tunnels are the easiest to collapse. While the clear distance increases to 3.5 times the diameter of tunnel, the calculation for twin shallow tunnels can be carried out by the method for independent single shallow tunnel. Therefore, 3.5 times the diameter of tunnel serves as a critical value to determine whether twin shallow tunnels influence each other. In designing twin shallow tunnels,appropriate clear distance value must be selected according to its change rules and actual topographic conditions, meanwhile, the influences of nonlinear failure criterion of soil materials and pore water must be completely considered. During the excavation process, supporting system should be intensified at the positions of larger burial depth or ground load to avoid collapses.展开更多
The average aggregate number(N)of electrostatically stabilized aggregate(ESAg)composed of oppositely-charged long-chain molecules,i.e., sodium ω-[α-(nathphyl)ethoxyl]undecanoate(FP^-)and cetyltrimethyl ammonium chlo...The average aggregate number(N)of electrostatically stabilized aggregate(ESAg)composed of oppositely-charged long-chain molecules,i.e., sodium ω-[α-(nathphyl)ethoxyl]undecanoate(FP^-)and cetyltrimethyl ammonium chloride(CTAC),in aqueous solution at 25℃ has been measured to be 11 to 16 in the CTAC-concentration range of 11×10^(-5) M to 30×10^(-5) M at a fixed FP- concentration of 1.0×10^(-5)M by the photon counting method.展开更多
In this paper, the stability problem of Bingham fluids flowing down an inclinedplane is studied with respect to two dimensional disturbances. The crilical Reynolodsnumber is given in ihe case of long waves, and the e...In this paper, the stability problem of Bingham fluids flowing down an inclinedplane is studied with respect to two dimensional disturbances. The crilical Reynolodsnumber is given in ihe case of long waves, and the effect of yield stress on stability isanalysed.展开更多
In this paper the stability problem of Bingham flowing down an inclinedplane is studied with respect to two dimensional disturbances, The critical Reynolodsnumber is given in the. case. of long wayes and the effect o...In this paper the stability problem of Bingham flowing down an inclinedplane is studied with respect to two dimensional disturbances, The critical Reynolodsnumber is given in the. case. of long wayes and the effect of yield stress on stability isanalysed.展开更多
Degradation of rock mass produced by rock blasting,stress relief,and other causes is an important factor in the assessment of rock strength.Quantified as a disturbance factor,such degradation varies depending on blast...Degradation of rock mass produced by rock blasting,stress relief,and other causes is an important factor in the assessment of rock strength.Quantified as a disturbance factor,such degradation varies depending on blasting control,stress state and stress relief,and rock mass quality.This study focuses on the impact of disturbance on the safety of slopes.The disturbance in the rock mass is characterized by the geometry of the disturbed zone,its size,the magnitude,and the decaying rate with the distance away from the slope surface.A method accounting for decay of rock disturbance is presented.A study of the impact of rock disturbance characteristics on the quantitative stability measures of slopes was carried out.These characteristics included disturbed zone geometry,its thickness,the maximum magnitude of the disturbance factor,and the rate of disturbance decaying.The thickness of the disturbed zone and the maximum factor of disturbance were found to have the greatest impact.For example,the factor of safety for a 45slope in low-quality rock mass can decrease from 1.96 to 1.09 as the thickness of the disturbed zone increases from 1/4 of slope height H to the double of H and the maximum disturbance factor increases from 0.5 to 1.Uniform thickness of a disturbed zone was found to yield more conservative outcomes than the triangular zones did.The critical failure surfaces were found to be shallow for high rates of disturbance decay,and they were the deepest for spatially uniform disturbance factors.展开更多
In this study, an advanced probabilistic neural network (APNN) method is proposed to reflect the global probability density function (PDF) by summing up the heterogeneous local PDF which is automatically determine...In this study, an advanced probabilistic neural network (APNN) method is proposed to reflect the global probability density function (PDF) by summing up the heterogeneous local PDF which is automatically determined in the individual standard deviation of variables. The APNN is applied to predict the stability number of armor blocks of breakwaters using the experimental data of' van der Meet, and the estimated results of the APNN are compared with those of an empirical formula and a previous artificial neural network (ANN) model. The APNN shows better results in predicting the stability number of armor bilks of breakwater and it provided the promising probabilistic viewpoints by using the individual standard deviation in a variable.展开更多
Remarkable improvement in efficiency and stability has been observed in a doped organic electroluminescence device, which consists of a hole-transport layer, an electron-transport layer and a luminescent layer. The ho...Remarkable improvement in efficiency and stability has been observed in a doped organic electroluminescence device, which consists of a hole-transport layer, an electron-transport layer and a luminescent layer. The hole-transport layer is a N,N’-bis(3-methyphenyl)-N,N’-diphenylbenzidine film. The doped emitting layer consists of 8-(quinolinolate)-aluminum as the host and rubrene as the emission dopant. The doped device demonstrated a brightness in excess of 40 000 cd/m 2 and the maximum external quantum efficiency of 3.4%, which is about six times and four times respectively greater than those of the undoped device. For no packaged deviced, a luminance half-life on the order of about 230 h has been achieved under a constant current density of 15 mA/cm 2, starting at 500 cd/m 2 at the room temperature.展开更多
基金The first author was supported by DIMACS Summer2 0 0 3Award
文摘Two new hereditary classes of P 5-free graphs where the stability number can be found in polynomial time are proposed.They generalize several known results.
基金Project(200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(09JJ1008) supported by Hunan Provincial Natural Science Foundation of ChinaProject(200631878557) supported by West Traffic of Science and Technology of China
文摘Based on strength reduction theory,the stability numbers of shallow tunnels were investigated within the framework of upper and lower bound theorems of limit analysis. Stability solutions taking into account of water seepage were presented and compared with those without considering seepage. The comparisons indicate that the maximum difference does not exceed 3.7%,which proves the present method credible. The results show that stability numbers of shallow tunnels considering seepage are much less than those without considering seepage,and that the difference of stability numbers between considering seepage and without considering seepage increase with increasing the depth ratio. The stability numbers decrease with increasing permeability coefficient and groundwater depth. Seepage has significant effects on the stability numbers of shallow tunnels.
基金The authors would like to appreciate the supports from the National Natural Science Foundation of China(Grant Nos.42077236,51608454,51609204,and 41977213).
文摘The strength of geomaterials is typically predicted by the Mohr-Coulomb yield criterion in slope stability analysis.The tensile strength of soils in this yield criterion,which is an extrapolation of the triaxial compression test results,is usually overestimated.Generally,the influences of tensile stresses in slopes are evaluated by two approaches:1)introducing cracks to eliminate the tensile stresses in slopes,and 2)truncating the strength envelope to reduce the tensile strength of the soils.However,comparative analyses of the two approaches have not been fully implemented,especially under dynamic conditions.In this study,three slope failure mechanisms corresponding to the predictions of slope stability by the mentioned two approaches subjected to seismic loadings are systematically evaluated.The stability factor considering the pre-existing crack,crack formation,and tension cut-off are compared one another.The most unfavorable crack locations corresponding to the different mechanisms are evaluated.The influence of tensile strength on the factor of safety of slopes is estimated as well.Further,the critical acceleration and the permanent displacement of slopes with pre-existing crack,and tension cut-off are derived in the framework of the kinematic theorem of limit analysis.The vertical effects of seismic coefficient on critical acceleration and permanent displacement are discussed.Conclusions can be drawn that the consideration of tension zone effects can sharply reduce the stability factor of slopes,especially for steep slopes and large horizontal seismic loads;different from the static condition,the slope with pre-existing crack is not always the most vulnerable to collapse,the tension cut-off mechanism in steep slopes may predict the lowest stability factor.In addition,the calculation shows that an evidently increase in the slope displacement is induced by the increasing downward vertical loads,while a decrease occurs if the vertical loads are upward.
基金the National Natural Science Foundation of China (No. 29736170).
文摘An innovational test method was developed on the basis of redefinition of the emulsion stability. The stability was characterized by relative volume percentage of disperse phase demulsified thoroughly from the top part and the bottom part of an emulsion sample, each weighting the same amount, after being settled for a given time at constant temperature. Three series of emulsions were prepared and tested successfully, which were emulsions of paraffin oil and water stabilized with polyoxyethylene lauryl ether series (AEO3 and AEO9) at various HLBs, and emulsions of rapeseed oil and water stablized with sorbitan monoleate (Span80) and each of polyoxyethylene (20) sorbitan carboxylic esters (Tween20, Tween40, Tween60, Tween80 and Tween85) at different HLBs. It provedthat this method is especially workable while the boundaries are opaque in a wide range of HLBs and is capable of offering an accurate optimum HLB.
基金Project(2013CB036004)supported by the National Basic Research Program of ChinaProject(51378510)supported by the NationalNatural Science Foundation of ChinaProject(CX2013B077)supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘Based on nonlinear Mohr-Coulomb failure criterion, the analytical solutions of stability number and supporting force on twin shallow tunnels were derived using upper bound theorem of limit analysis. The optimized solutions were obtained by the technique of sequential quadratic programming. When nonlinear coefficient equals 1 and internal friction angle equals 0, the nonlinear Mohr-Coulomb failure criterion degenerates into linear failure criterion. The calculated results of stability number in this work were compared with previous results, and the agreement verifies the effectiveness of the present method. Under the condition of nonlinear Mohr-Coulomb failure criterion, the results show that the supporting force on twin shallow tunnels obviously increases when the nonlinear coefficient, burial depth, ground load or pore water pressure coefficients increase. When the clear distance is 0.5to 1.0 times the diameter of tunnel, the supporting force of twin shallow tunnels reaches its maximum value, which means that the tunnels are the easiest to collapse. While the clear distance increases to 3.5 times the diameter of tunnel, the calculation for twin shallow tunnels can be carried out by the method for independent single shallow tunnel. Therefore, 3.5 times the diameter of tunnel serves as a critical value to determine whether twin shallow tunnels influence each other. In designing twin shallow tunnels,appropriate clear distance value must be selected according to its change rules and actual topographic conditions, meanwhile, the influences of nonlinear failure criterion of soil materials and pore water must be completely considered. During the excavation process, supporting system should be intensified at the positions of larger burial depth or ground load to avoid collapses.
文摘The average aggregate number(N)of electrostatically stabilized aggregate(ESAg)composed of oppositely-charged long-chain molecules,i.e., sodium ω-[α-(nathphyl)ethoxyl]undecanoate(FP^-)and cetyltrimethyl ammonium chloride(CTAC),in aqueous solution at 25℃ has been measured to be 11 to 16 in the CTAC-concentration range of 11×10^(-5) M to 30×10^(-5) M at a fixed FP- concentration of 1.0×10^(-5)M by the photon counting method.
文摘In this paper, the stability problem of Bingham fluids flowing down an inclinedplane is studied with respect to two dimensional disturbances. The crilical Reynolodsnumber is given in ihe case of long waves, and the effect of yield stress on stability isanalysed.
文摘In this paper the stability problem of Bingham flowing down an inclinedplane is studied with respect to two dimensional disturbances, The critical Reynolodsnumber is given in the. case. of long wayes and the effect of yield stress on stability isanalysed.
基金supported by the National Science Foundation(Grant No.CMMI-1901582)supported by the Nuclear Research and Development Program of the National Research Foundation of Korea(Grant No.2024-M2E3A2007963)the Korea Electric Power Corporation(Grant No.R22XO05-05).
文摘Degradation of rock mass produced by rock blasting,stress relief,and other causes is an important factor in the assessment of rock strength.Quantified as a disturbance factor,such degradation varies depending on blasting control,stress state and stress relief,and rock mass quality.This study focuses on the impact of disturbance on the safety of slopes.The disturbance in the rock mass is characterized by the geometry of the disturbed zone,its size,the magnitude,and the decaying rate with the distance away from the slope surface.A method accounting for decay of rock disturbance is presented.A study of the impact of rock disturbance characteristics on the quantitative stability measures of slopes was carried out.These characteristics included disturbed zone geometry,its thickness,the maximum magnitude of the disturbance factor,and the rate of disturbance decaying.The thickness of the disturbed zone and the maximum factor of disturbance were found to have the greatest impact.For example,the factor of safety for a 45slope in low-quality rock mass can decrease from 1.96 to 1.09 as the thickness of the disturbed zone increases from 1/4 of slope height H to the double of H and the maximum disturbance factor increases from 0.5 to 1.Uniform thickness of a disturbed zone was found to yield more conservative outcomes than the triangular zones did.The critical failure surfaces were found to be shallow for high rates of disturbance decay,and they were the deepest for spatially uniform disturbance factors.
基金This work was supported by grant PM484400 PM41500 from"High-Tech Port Research Program"founded by Ministry of Maritime Affairs and Fisheries of Korean Government.
文摘In this study, an advanced probabilistic neural network (APNN) method is proposed to reflect the global probability density function (PDF) by summing up the heterogeneous local PDF which is automatically determined in the individual standard deviation of variables. The APNN is applied to predict the stability number of armor blocks of breakwaters using the experimental data of' van der Meet, and the estimated results of the APNN are compared with those of an empirical formula and a previous artificial neural network (ANN) model. The APNN shows better results in predicting the stability number of armor bilks of breakwater and it provided the promising probabilistic viewpoints by using the individual standard deviation in a variable.
基金The National Natural Science Foundation of China , National "863" P
文摘Remarkable improvement in efficiency and stability has been observed in a doped organic electroluminescence device, which consists of a hole-transport layer, an electron-transport layer and a luminescent layer. The hole-transport layer is a N,N’-bis(3-methyphenyl)-N,N’-diphenylbenzidine film. The doped emitting layer consists of 8-(quinolinolate)-aluminum as the host and rubrene as the emission dopant. The doped device demonstrated a brightness in excess of 40 000 cd/m 2 and the maximum external quantum efficiency of 3.4%, which is about six times and four times respectively greater than those of the undoped device. For no packaged deviced, a luminance half-life on the order of about 230 h has been achieved under a constant current density of 15 mA/cm 2, starting at 500 cd/m 2 at the room temperature.