A method is presented to improve the laser frequency stabilization for the optical pumping cesium clock. By comparing the laser frequency stabilization of different schemes, we verify that the light angle is an import...A method is presented to improve the laser frequency stabilization for the optical pumping cesium clock. By comparing the laser frequency stabilization of different schemes, we verify that the light angle is an important factor that limits the long-term frequency stability. We minimize the drift of the light angle by using a fiber- coupled output, and lock the frequency of a distributed-feedback diode laser to the fluorescence spectrum of the atomic beam. The measured frequency stability is about 3.5 ×10^-11 at i s and reaches 1.5 × 10^-12 at 2000s. The Allan variance keeps going down for up to thousands of seconds, indicating that the medium- and long-term stability of the laser frequency is significantly improved and perfectly fulfills the requirement for the optical pumping cesium clock.展开更多
In developing power grids,setting standards is critical to its success.The development of China’s power industry has proposed new requirements for power systems to ensure secure and stable operations.The principal st...In developing power grids,setting standards is critical to its success.The development of China’s power industry has proposed new requirements for power systems to ensure secure and stable operations.The principal standards for the security and stability of China’s current power systems are analyzed in terms of operational control,generator-grid coordination and simulation.The shortcomings are pointed out and the directions of future development are discussed.In the end,the study highlighted the following key areas that require further research and improvement:the evaluation criteria of power system security and stability should be improved to ensure the secure and stable operation of China’s power systems;the operational control standards should be constantly enhanced to increase the reliability and flexibility of operational control strategies;generatorgrid coordination standards should be upgraded to improve the coordination between the generator control protection system and the grid;and the simulation methodology should be standardized in future power system security and stability research.展开更多
基金Supported by the National Fundamental Research Program of China under Grant No 2011CB921501the National Natural Science Foundation of China under Grant Nos 91336103,10934010 and 61078026
文摘A method is presented to improve the laser frequency stabilization for the optical pumping cesium clock. By comparing the laser frequency stabilization of different schemes, we verify that the light angle is an important factor that limits the long-term frequency stability. We minimize the drift of the light angle by using a fiber- coupled output, and lock the frequency of a distributed-feedback diode laser to the fluorescence spectrum of the atomic beam. The measured frequency stability is about 3.5 ×10^-11 at i s and reaches 1.5 × 10^-12 at 2000s. The Allan variance keeps going down for up to thousands of seconds, indicating that the medium- and long-term stability of the laser frequency is significantly improved and perfectly fulfills the requirement for the optical pumping cesium clock.
文摘In developing power grids,setting standards is critical to its success.The development of China’s power industry has proposed new requirements for power systems to ensure secure and stable operations.The principal standards for the security and stability of China’s current power systems are analyzed in terms of operational control,generator-grid coordination and simulation.The shortcomings are pointed out and the directions of future development are discussed.In the end,the study highlighted the following key areas that require further research and improvement:the evaluation criteria of power system security and stability should be improved to ensure the secure and stable operation of China’s power systems;the operational control standards should be constantly enhanced to increase the reliability and flexibility of operational control strategies;generatorgrid coordination standards should be upgraded to improve the coordination between the generator control protection system and the grid;and the simulation methodology should be standardized in future power system security and stability research.