The development of a wearable,easy-to-fabricate,and stable intelligent minisystem is highly desired for the closedloop management of diabetes.Conventional systems always suffer from large size,high cost,low stability,...The development of a wearable,easy-to-fabricate,and stable intelligent minisystem is highly desired for the closedloop management of diabetes.Conventional systems always suffer from large size,high cost,low stability,or complex fabrication.Here,we show for the first time a wearable,rapidly manufacturable,stability-enhancing microneedle patch for diabetes management.The patch consists of a graphene composite ink-printed sensor on hollow microneedles,a polyethylene glycol(PEG)-functionalized electroosmotic micropump integrated with the microneedles,and a printed circuit board for precise and intelligent control of the sensor and pump to detect interstitial glucose and deliver insulin through the hollow channels.Via synthesizing and printing the graphene composite ink,the sensor fabrication process is fast and the sensing electrodes are stable.The PEG functionalization enables the micropump a significantly higher stability in delivering insulin,extending its lifetime from days to weeks.The patch successfully demonstrated excellent blood glucose control in diabetic rats.This work may introduce a new paradigm for building new closedloop systems and shows great promise for widespread use in patients with diabetes.展开更多
Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instabilit...Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instability,making it difficult to achieve high performance solid-state sodium-ion batteries.Herein,the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity,achieving high-rate performance,air stability and electrochemically thermal stability for Na_(0.95)Li_(0.06)Ni_(0.25)Cu_(0.05)Fe_(0.15)Mn_(0.49)O_(2).This cathode delivers a high reversible capacity(141 mAh g^(−1)at 0.2C),excellent rate capability(111 mAh g^(−1)at 8C,85 mAh g^(−1)even at 20C),and long-term stability(over 85%capacity retention after 1000 cycles),which is attributed to a rapid and reversible O3–P3 phase transition in regions of low voltage and suppresses phase transition.Moreover,the compound remains unchanged over seven days and keeps thermal stability until 279℃.Remarkably,the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g^(−1)at 5C and keeps retention of 96%after 400 cycles.This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries.展开更多
Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery...Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries.展开更多
Colorectal cancer(CRC)is a complex disease with diverse etiologies and clinical outcomes.Despite considerable progress in development of CRC therapeutics,challenges remain regarding the diagnosis and management of adv...Colorectal cancer(CRC)is a complex disease with diverse etiologies and clinical outcomes.Despite considerable progress in development of CRC therapeutics,challenges remain regarding the diagnosis and management of advanced stage metastatic CRC(mCRC).In particular,the five-year survival rate is very low since mCRC is currently rarely curable.Over the past decade,cancer treatment has significantly improved with the introduction of cancer immunotherapies,specifically immune checkpoint inhibitors.Therapies aimed at blocking immune checkpoints such as PD-1,PD-L1,and CTLA-4 target inhibitory pathways of the immune system,and thereby enhance anti-tumor immunity.These therapies thus have shown promising results in many clinical trials alone or in combination.The efficacy and safety of immunotherapy,either alone or in combination with CRC,have been investigated in several clinical trials.Clinical trials,including KEYNOTE-164 and CheckMate 142,have led to Food and Drug Administration approval of the PD-1 inhibitors pembrolizumab and nivolumab,respectively,for the treatment of patients with unresectable or metastatic microsatellite instability-high or deficient mismatch repair CRC.Unfortunately,these drugs benefit only a small percentage of patients,with the benefits of immunotherapy remaining elusive for the vast majority of CRC patients.To this end,primary and secondary resistance to immunotherapy remains a significant issue,and further research is necessary to optimize the use of immunotherapy in CRC and identify biomarkers to predict the response.This review provides a comprehensive overview of the clinical trials involving immune checkpoint inhibitors in CRC.The underlying rationale,challenges faced,and potential future steps to improve the prognosis and enhance the likelihood of successful trials in this field are discussed.展开更多
Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines...Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.展开更多
This research examines the transmission dynamics of the Omicron variant of COVID-19 using SEIQIcRVW and SQIRV models,considering the delay in converting susceptible individuals into infected ones.The significant delay...This research examines the transmission dynamics of the Omicron variant of COVID-19 using SEIQIcRVW and SQIRV models,considering the delay in converting susceptible individuals into infected ones.The significant delays eventually resulted in the pandemic’s containment.To ensure the safety of the host population,this concept integrates quarantine and the COVID-19 vaccine.We investigate the stability of the proposed models.The fundamental reproduction number influences stability conditions.According to our findings,asymptomatic cases considerably impact the prevalence of Omicron infection in the community.The real data of the Omicron variant from Chennai,Tamil Nadu,India,is used to validate the outputs.展开更多
In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method...In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.展开更多
Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from p...Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs.展开更多
Dear Editor, This letter is concerned with the evolution strategy for addressing multi-objective feature selection problems in classification. Previous methods suffer from limitations such as being trapped in local op...Dear Editor, This letter is concerned with the evolution strategy for addressing multi-objective feature selection problems in classification. Previous methods suffer from limitations such as being trapped in local optima and lacking stability. To overcome them, we propose a novel eliteguided mechanism based on information theory. Firstly, an elite solution is generated through a dimension reduction strategy and incorporated to the initialization population.展开更多
In backlighting systems for liquid crystal displays,conventional red,green,and blue(RGB)light sources that lack polarization properties can result in a significant optical loss of up to 50%when passing through a polar...In backlighting systems for liquid crystal displays,conventional red,green,and blue(RGB)light sources that lack polarization properties can result in a significant optical loss of up to 50%when passing through a polarizer.To address this inefficiency and optimize energy utilization,this study presents a high-performance device designed for RGB polarized emissions.The device employs an array of semipolar blueμLEDs with inherent polarization capabilities,coupled with mechanically stretched films of green-emitting CsPbBr3 nanorods and red-emitting CsPbI3-Cs4PbI6 hybrid nanocrystals.The CsPbBr3 nanorods in the polymer film offer intrinsic polarization emission,while the aligned-wire structures formed by the stable CsPbI3-Cs4PbI6 hybrid nanocrystals contribute to substantial anisotropic emissions,due to their high dielectric constant.The resulting device achieved RGB polarization degrees of 0.26,0.48,and 0.38,respectively,and exhibited a broad color gamut,reaching 137.2%of the NTSC standard and 102.5%of the Rec.2020 standard.When compared to a device utilizing c-plane LEDs for excitation,the current approach increased the intensity of light transmitted through the polarizer by 73.6%.This novel fabrication approach for polarized devices containing RGB components holds considerable promise for advancing next-generation display technologies.展开更多
The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dyn...The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.展开更多
Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence d...Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence during depressurization,which will destroy the original force state of the production well.However,existing research on the stability of oil and gas production wells assumes the formation to be stable,and lacks consideration of the force exerted on the hydrate production well by formation subsidence caused by hydrate decomposition during production.To fill this gap,this paper proposes an analytical method for the dynamic evolution of the stability of hydrate production well considering the effects of hydrate decomposition.Based on the mechanical model of the production well,the basis for stability analysis has been proposed.A multi-field coupling model of the force state of the production well considering the effect of hydrate decomposition and formation subsidence is established,and a solver is developed.The analytical approach is verified by its good agreement with the results from the numerical method.A case study found that the decomposition of hydrate will increase the pulling-down force and reduce the supporting force,which is the main reason for the stability deterioration.The higher the initial hydrate saturation,the larger the reservoir thickness,and the lower the production pressure,the worse the stability or even instability.This work can provide a theoretical reference for the stability maintaining of the production well.展开更多
Magnetic sense,or termed magnetoreception,has evolved in a broad range of taxa within the animal kingdom to facilitate orientation and navigation.MagRs,highly conserved A-type iron-sulfur proteins,are widely distribut...Magnetic sense,or termed magnetoreception,has evolved in a broad range of taxa within the animal kingdom to facilitate orientation and navigation.MagRs,highly conserved A-type iron-sulfur proteins,are widely distributed across all phyla and play essential roles in both magnetoreception and iron-sulfur cluster biogenesis.However,the evolutionary origins and functional diversification of MagRs from their prokaryotic ancestor remain unclear.In this study,MagR sequences from 131 species,ranging from bacteria to humans,were selected for analysis,with 23 representative sequences covering species from prokaryotes to Mollusca,Arthropoda,Osteichthyes,Reptilia,Aves,and mammals chosen for protein expression and purification.Biochemical studies revealed a gradual increase in total iron content in MagRs during evolution.Three types of MagRs were identified,each with distinct iron and/or iron-sulfur cluster binding capacity and protein stability,indicating continuous expansion of the functional roles of MagRs during speciation and evolution.This evolutionary biochemical study provides valuable insights into how evolution shapes the physical and chemical properties of biological molecules such as MagRs and how these properties influence the evolutionary trajectories of MagRs.展开更多
Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induce...Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induced by the large radius of K+ions.Here,we explore high-performance K-ion half/full batteries with high rate capability,high specific capacity,and extremely durable cycle stability based on carbon nanosheets with tailored N dopants,which can alleviate the change of volume,increase electronic conductivity,and enhance the K+ion adsorption.The as-assembled K-ion half-batteries show an excellent rate capability of 468 mA h g^(−1) at 100 mA g^(−1),which is superior to those of most carbon materials reported to date.Moreover,the as-assembled half-cells have an outstanding life span,running 40,000 cycles over 8 months with a specific capacity retention of 100%at a high current density of 2000 mA g^(−1),and the target full cells deliver a high reversible specific capacity of 146 mA h g^(−1) after 2000 cycles over 2 months,with a specific capacity retention of 113%at a high current density of 500 mA g^(−1),both of which are state of the art in the field of K-ion batteries.This study might provide some insights into and potential avenues for exploration of advanced K-ion batteries with durable stability for practical applications.展开更多
Poly(ethylene oxide)(PEO)and Li_(6.75)La_(3)Zr_(1.75)Ta_(0.25)O_(12)(LLZTO)-based composite polymer electrolytes(CPEs)are considered one of the most promising solid electrolyte systems.However,agglomeration of LLZTO w...Poly(ethylene oxide)(PEO)and Li_(6.75)La_(3)Zr_(1.75)Ta_(0.25)O_(12)(LLZTO)-based composite polymer electrolytes(CPEs)are considered one of the most promising solid electrolyte systems.However,agglomeration of LLZTO within PEO and lack of Li^(+)channels result in poor electrochemical properties.Herein,a functional supramolecular combination(CD-TFSI)consisting of activeβ-cyclodextrin(CD)supramolecular with self-assembled LiTFSI salt is selected as an interface modifier to coat LLZTO fillers.Benefiting from vast H-bonds formed betweenβ-CD and PEO matrix and/or LLZTO,homogeneous dispersion and tight interface contact are obtained.Moreover,^(6)Li NMR spectra confirm a new Li^(+)transmission pathway from PEO matrix to LLZTO ceramic then to PEO matrix in the as-prepared PEO/LLZTO@CD-TFSI CPEs due to the typical cavity structure ofβ-CD.As a proof,the conductivity is increased from 5.3×10^(-4)S cm^(-1)to 8.7×10^(-4)S cm^(-1)at 60℃,the Li^(+)transference number is enhanced from 0.38 to 0.48,and the electrochemical stability window is extended to 5.1 V versus Li/Li^(+).Li‖LiFePO_(4)CR2032 coin full cells and pouch cells prove the practical application of the as-prepared PEO/LLZTO@CD-TFSI CPEs.This work offers a new strategy of interface modifying LLZTO fillers with functional supramolecular combination to optimize PEO/LLZTO CPEs for solid lithium batteries.展开更多
Degradation of rock mass produced by rock blasting,stress relief,and other causes is an important factor in the assessment of rock strength.Quantified as a disturbance factor,such degradation varies depending on blast...Degradation of rock mass produced by rock blasting,stress relief,and other causes is an important factor in the assessment of rock strength.Quantified as a disturbance factor,such degradation varies depending on blasting control,stress state and stress relief,and rock mass quality.This study focuses on the impact of disturbance on the safety of slopes.The disturbance in the rock mass is characterized by the geometry of the disturbed zone,its size,the magnitude,and the decaying rate with the distance away from the slope surface.A method accounting for decay of rock disturbance is presented.A study of the impact of rock disturbance characteristics on the quantitative stability measures of slopes was carried out.These characteristics included disturbed zone geometry,its thickness,the maximum magnitude of the disturbance factor,and the rate of disturbance decaying.The thickness of the disturbed zone and the maximum factor of disturbance were found to have the greatest impact.For example,the factor of safety for a 45slope in low-quality rock mass can decrease from 1.96 to 1.09 as the thickness of the disturbed zone increases from 1/4 of slope height H to the double of H and the maximum disturbance factor increases from 0.5 to 1.Uniform thickness of a disturbed zone was found to yield more conservative outcomes than the triangular zones did.The critical failure surfaces were found to be shallow for high rates of disturbance decay,and they were the deepest for spatially uniform disturbance factors.展开更多
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe...Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.展开更多
The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the develop...The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the development of four soft computing models:YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJCSA-MLPnet.First of all,the Yeo-Johnson(YJ)transformation technique was used to stabilize the variance of data and make it more suitable for parametric statistical models that assume normality and equal variances.This technique is expected to improve the accuracy of friction angle prediction models.The friction angle prediction models then utilized multi-layer perceptron neural networks(MLPnet)and metaheuristic optimization algorithms to further enhance performance,including flower pollination algorithm(FPA),coral reefs optimization(CRO),ant colony optimization continuous(ACOC),and cuckoo search algorithm(CSA).The prediction models without the YJ technique,i.e.FPA-MLPnet,CRO-MLPnet,ACOC-MLPnet,and CSA-MLPnet,were then compared to those with the YJ technique,i.e.YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJ-CSA-MLPnet.Among these,the YJ-CRO-MLPnet model demonstrated superior reliability,achieving an accuracy of up to 83%in predicting the friction angle of clay in practical engineering scenarios.This improvement is significant,as it represents an increase from 1.3%to approximately 20%compared to the models that did not utilize the YJ transformation technique.展开更多
NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy leve...NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability.展开更多
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil...The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.展开更多
基金acknowledge National Natural Science Foundation of China(No.52072007,and No.82130021)National High Level Hospital Clinical Research Funding(High Quality Clinical Research Project of Peking University First Hospital,No.2022CR83)+4 种基金State Key Laboratory of Vascular Homeostasis and Remodeling at Peking University,National Key R&D Program of China(No.2022YFB3204400)Beijing Young Scientist Program(No.BJJWZYJH01201910001006)CAMS Innovation Fund for Medical Sciences(No.2019-I2M-5-046,and No.2020-JKCS-009)PKU-Baidu Fund(No.2020BD026,and No.2020BD044)Capital’s Funds for Health Improvement and Research(No.CFH2022-1-4071).
文摘The development of a wearable,easy-to-fabricate,and stable intelligent minisystem is highly desired for the closedloop management of diabetes.Conventional systems always suffer from large size,high cost,low stability,or complex fabrication.Here,we show for the first time a wearable,rapidly manufacturable,stability-enhancing microneedle patch for diabetes management.The patch consists of a graphene composite ink-printed sensor on hollow microneedles,a polyethylene glycol(PEG)-functionalized electroosmotic micropump integrated with the microneedles,and a printed circuit board for precise and intelligent control of the sensor and pump to detect interstitial glucose and deliver insulin through the hollow channels.Via synthesizing and printing the graphene composite ink,the sensor fabrication process is fast and the sensing electrodes are stable.The PEG functionalization enables the micropump a significantly higher stability in delivering insulin,extending its lifetime from days to weeks.The patch successfully demonstrated excellent blood glucose control in diabetic rats.This work may introduce a new paradigm for building new closedloop systems and shows great promise for widespread use in patients with diabetes.
基金National Natural Science Foundation of China(52202327)Science and Technology Commission of Shanghai Municipality(22ZR1471300)+2 种基金National Science Foundation of China(Grant 51972326)Youth Innovation Promotion Association CAS,Foundation Strengthening ProjectProgram of Shanghai Academic Research Leader(Grant 22XD1424300).
文摘Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instability,making it difficult to achieve high performance solid-state sodium-ion batteries.Herein,the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity,achieving high-rate performance,air stability and electrochemically thermal stability for Na_(0.95)Li_(0.06)Ni_(0.25)Cu_(0.05)Fe_(0.15)Mn_(0.49)O_(2).This cathode delivers a high reversible capacity(141 mAh g^(−1)at 0.2C),excellent rate capability(111 mAh g^(−1)at 8C,85 mAh g^(−1)even at 20C),and long-term stability(over 85%capacity retention after 1000 cycles),which is attributed to a rapid and reversible O3–P3 phase transition in regions of low voltage and suppresses phase transition.Moreover,the compound remains unchanged over seven days and keeps thermal stability until 279℃.Remarkably,the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g^(−1)at 5C and keeps retention of 96%after 400 cycles.This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries.
基金the National Research Foundation(NRF)of Korea(No.2022R1A2B5B02002097),funded by the Korea government(MSIT).
文摘Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries.
基金Supported by IU Simon Comprehensive Cancer Center grant,No.5P30CA082709-24.
文摘Colorectal cancer(CRC)is a complex disease with diverse etiologies and clinical outcomes.Despite considerable progress in development of CRC therapeutics,challenges remain regarding the diagnosis and management of advanced stage metastatic CRC(mCRC).In particular,the five-year survival rate is very low since mCRC is currently rarely curable.Over the past decade,cancer treatment has significantly improved with the introduction of cancer immunotherapies,specifically immune checkpoint inhibitors.Therapies aimed at blocking immune checkpoints such as PD-1,PD-L1,and CTLA-4 target inhibitory pathways of the immune system,and thereby enhance anti-tumor immunity.These therapies thus have shown promising results in many clinical trials alone or in combination.The efficacy and safety of immunotherapy,either alone or in combination with CRC,have been investigated in several clinical trials.Clinical trials,including KEYNOTE-164 and CheckMate 142,have led to Food and Drug Administration approval of the PD-1 inhibitors pembrolizumab and nivolumab,respectively,for the treatment of patients with unresectable or metastatic microsatellite instability-high or deficient mismatch repair CRC.Unfortunately,these drugs benefit only a small percentage of patients,with the benefits of immunotherapy remaining elusive for the vast majority of CRC patients.To this end,primary and secondary resistance to immunotherapy remains a significant issue,and further research is necessary to optimize the use of immunotherapy in CRC and identify biomarkers to predict the response.This review provides a comprehensive overview of the clinical trials involving immune checkpoint inhibitors in CRC.The underlying rationale,challenges faced,and potential future steps to improve the prognosis and enhance the likelihood of successful trials in this field are discussed.
基金supported by Science and Technology Project of Yunnan Provincial Transportation Department(Grant No.25 of 2018)the National Natural Science Foundation of China(Grant No.52279107)The authors are grateful for the support by the China Scholarship Council(CSC No.202206260203 and No.201906690049).
文摘Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.
基金supported via funding from Prince Sattam bin Abdulaziz University Project Number(PSAU/2023/R/1444)The first author is partially supported by the University Research Fellowship(PU/AD-3/URF/21F37237/2021 dated 09.11.2021)of PeriyarUniversity,SalemThe second author is supported by the fund for improvement of Science and Technology Infrastructure(FIST)of DST(SR/FST/MSI-115/2016).
文摘This research examines the transmission dynamics of the Omicron variant of COVID-19 using SEIQIcRVW and SQIRV models,considering the delay in converting susceptible individuals into infected ones.The significant delays eventually resulted in the pandemic’s containment.To ensure the safety of the host population,this concept integrates quarantine and the COVID-19 vaccine.We investigate the stability of the proposed models.The fundamental reproduction number influences stability conditions.According to our findings,asymptomatic cases considerably impact the prevalence of Omicron infection in the community.The real data of the Omicron variant from Chennai,Tamil Nadu,India,is used to validate the outputs.
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT)(No. 2021R1I1A1A0105621313, No. 2022R1F1A1074441, No. 2022K1A3A1A20014496, and No. 2022R1F1A1074083)supported by the Ministry of Education Funding (No. RIS 2021-004)supported by the Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (RS-2023-00284318).
文摘In this study,precise control over the thickness and termination of Ti3C2TX MXene flakes is achieved to enhance their electrical properties,environmental stability,and gas-sensing performance.Utilizing a hybrid method involving high-pressure processing,stirring,and immiscible solutions,sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer.Functionalization control is achieved by defunctionalizing MXene at 650℃ under vacuum and H2 gas in a CVD furnace,followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD.Notably,the introduction of iodine,which has a larger atomic size,lower electronegativity,reduce shielding effect,and lower hydrophilicity(contact angle:99°),profoundly affecting MXene.It improves the surface area(36.2 cm^(2) g^(-1)),oxidation stability in aqueous/ambient environments(21 days/80 days),and film conductivity(749 S m^(-1)).Additionally,it significantly enhances the gas-sensing performance,including the sensitivity(0.1119Ωppm^(-1)),response(0.2% and 23%to 50 ppb and 200 ppm NO_(2)),and response/recovery times(90/100 s).The reduced shielding effect of the–I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO2.This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.
基金the supports from the National Natural Science Foundation of China(Nos.62264012,62164009)Inner Mongolia Higher Education Research Project(No.NJZZ22343)+1 种基金Inner Mongolia University Research Foundation for Advanced Talents in 2021(No.10000-21311201/005)the Inner Mongolia Autonomous Region for Advanced Talents in 2020(No.12000-12102628)。
文摘Wide bandgap perovskite solar cells(PSCs)have attracted significant attention because they can be applied to the top cells of tandem solar cells.However,high open-circuit voltage(V_(OC))deficit(>0.4 V)result from poor crystallization and high non-radiative recombination losses become a serious limitation in the pursuit of high performance.Here,the relevance between different Pbl_(2)proportions and performance parameters are revealed through analysis of surface morphology,residual stress,and photostability.The increase of Pbl_(2)proportion promotes crystal growth and reduces the work function of the perovskite film surface and promotes the energy level alignment with the carrier transport layer,which decreased the V_(OC)deficit.However,residual PbI_(2)exacerbated the stress level of perovskite film,and the resulting lattice disorder deteriorated the photostability of the device.Ultimately,after the synergistic passivation of residual PbI_(2)and PEAI,the V_(OC)achieves 1.266 V and V_(OC)deficit is less than 0.4 V,the record value in wide bandgap PSCs.
基金supported in part by the Japan Society for the Promotion of Science (JSPS) KAKENHI (JP22H 03643)the Japan Science and Technology Agency (JST) (the establishment of university fellowships towards the creation of science technology innovation) (JPMJFS2115)。
文摘Dear Editor, This letter is concerned with the evolution strategy for addressing multi-objective feature selection problems in classification. Previous methods suffer from limitations such as being trapped in local optima and lacking stability. To overcome them, we propose a novel eliteguided mechanism based on information theory. Firstly, an elite solution is generated through a dimension reduction strategy and incorporated to the initialization population.
基金the National Natural Science Foundation of China(62274138)Natural Science Foundation of Fujian Province of China(2023J06012)+2 种基金Science and Technology Plan Project in Fujian Province of China(2021H0011)Fundamental Research Funds for the Central Universities(20720230029)Compound semiconductor technology Collaborative Innovation Platform project of FuXiaQuan National Independent Innovation Demonstration Zone(3502ZCQXT2022005).
文摘In backlighting systems for liquid crystal displays,conventional red,green,and blue(RGB)light sources that lack polarization properties can result in a significant optical loss of up to 50%when passing through a polarizer.To address this inefficiency and optimize energy utilization,this study presents a high-performance device designed for RGB polarized emissions.The device employs an array of semipolar blueμLEDs with inherent polarization capabilities,coupled with mechanically stretched films of green-emitting CsPbBr3 nanorods and red-emitting CsPbI3-Cs4PbI6 hybrid nanocrystals.The CsPbBr3 nanorods in the polymer film offer intrinsic polarization emission,while the aligned-wire structures formed by the stable CsPbI3-Cs4PbI6 hybrid nanocrystals contribute to substantial anisotropic emissions,due to their high dielectric constant.The resulting device achieved RGB polarization degrees of 0.26,0.48,and 0.38,respectively,and exhibited a broad color gamut,reaching 137.2%of the NTSC standard and 102.5%of the Rec.2020 standard.When compared to a device utilizing c-plane LEDs for excitation,the current approach increased the intensity of light transmitted through the polarizer by 73.6%.This novel fabrication approach for polarized devices containing RGB components holds considerable promise for advancing next-generation display technologies.
文摘The influence of variable viscosity and double diffusion on the convective stability of a nanofluid flow in an inclined porous channel is investigated.The DarcyBrinkman model is used to characterize the fluid flow dynamics in porous materials.The analytical solutions are obtained for the unidirectional and completely developed flow.Based on a normal mode analysis,the generalized eigenvalue problem under a perturbed state is solved.The eigenvalue problem is then solved by the spectral method.Finally,the critical Rayleigh number with the corresponding wavenumber is evaluated at the assigned values of the other flow-governing parameters.The results show that increasing the Darcy number,the Lewis number,the Dufour parameter,or the Soret parameter increases the stability of the system,whereas increasing the inclination angle of the channel destabilizes the flow.Besides,the flow is the most unstable when the channel is vertically oriented.
基金financially supported by the National Natural Science Foundation of China(Grant No.51890914)。
文摘Different from oil and gas production,hydrate reservoirs are shallow and unconsolidated,whose mechanical properties deteriorate with hydrate decomposition.Therefore,the formations will undergo significant subsidence during depressurization,which will destroy the original force state of the production well.However,existing research on the stability of oil and gas production wells assumes the formation to be stable,and lacks consideration of the force exerted on the hydrate production well by formation subsidence caused by hydrate decomposition during production.To fill this gap,this paper proposes an analytical method for the dynamic evolution of the stability of hydrate production well considering the effects of hydrate decomposition.Based on the mechanical model of the production well,the basis for stability analysis has been proposed.A multi-field coupling model of the force state of the production well considering the effect of hydrate decomposition and formation subsidence is established,and a solver is developed.The analytical approach is verified by its good agreement with the results from the numerical method.A case study found that the decomposition of hydrate will increase the pulling-down force and reduce the supporting force,which is the main reason for the stability deterioration.The higher the initial hydrate saturation,the larger the reservoir thickness,and the lower the production pressure,the worse the stability or even instability.This work can provide a theoretical reference for the stability maintaining of the production well.
基金National Natural Science Foundation of China(31640001 and T2350005 to C.X.)Ministry of Science and Technology of China(2021ZD0140300 to C.X.)Presidential Foundation of Hefei Institutes of Physical Science,Chinese Academy of Sciences(Y96XC11131,E26CCG27,and E26CCD15 to C.X.,E36CWGBR24B and E36CZG14132 to T.C.)。
文摘Magnetic sense,or termed magnetoreception,has evolved in a broad range of taxa within the animal kingdom to facilitate orientation and navigation.MagRs,highly conserved A-type iron-sulfur proteins,are widely distributed across all phyla and play essential roles in both magnetoreception and iron-sulfur cluster biogenesis.However,the evolutionary origins and functional diversification of MagRs from their prokaryotic ancestor remain unclear.In this study,MagR sequences from 131 species,ranging from bacteria to humans,were selected for analysis,with 23 representative sequences covering species from prokaryotes to Mollusca,Arthropoda,Osteichthyes,Reptilia,Aves,and mammals chosen for protein expression and purification.Biochemical studies revealed a gradual increase in total iron content in MagRs during evolution.Three types of MagRs were identified,each with distinct iron and/or iron-sulfur cluster binding capacity and protein stability,indicating continuous expansion of the functional roles of MagRs during speciation and evolution.This evolutionary biochemical study provides valuable insights into how evolution shapes the physical and chemical properties of biological molecules such as MagRs and how these properties influence the evolutionary trajectories of MagRs.
基金National Natural Science Foundation of China,Grant/Award Numbers:51972178,52202061Hunan Provincial Nature Science Foundation,Grant/Award Number:2022JJ40068。
文摘Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induced by the large radius of K+ions.Here,we explore high-performance K-ion half/full batteries with high rate capability,high specific capacity,and extremely durable cycle stability based on carbon nanosheets with tailored N dopants,which can alleviate the change of volume,increase electronic conductivity,and enhance the K+ion adsorption.The as-assembled K-ion half-batteries show an excellent rate capability of 468 mA h g^(−1) at 100 mA g^(−1),which is superior to those of most carbon materials reported to date.Moreover,the as-assembled half-cells have an outstanding life span,running 40,000 cycles over 8 months with a specific capacity retention of 100%at a high current density of 2000 mA g^(−1),and the target full cells deliver a high reversible specific capacity of 146 mA h g^(−1) after 2000 cycles over 2 months,with a specific capacity retention of 113%at a high current density of 500 mA g^(−1),both of which are state of the art in the field of K-ion batteries.This study might provide some insights into and potential avenues for exploration of advanced K-ion batteries with durable stability for practical applications.
基金the financial support of the National Natural Science Foundation of China(Nos.21773167,51972220)the National Key Research and Development Program of China(No.2021YFE0107200)+1 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.20KJA480003)the Key R&D Project funded by Department of Science and Technology of Jiangsu Province(No.BE2020003)
文摘Poly(ethylene oxide)(PEO)and Li_(6.75)La_(3)Zr_(1.75)Ta_(0.25)O_(12)(LLZTO)-based composite polymer electrolytes(CPEs)are considered one of the most promising solid electrolyte systems.However,agglomeration of LLZTO within PEO and lack of Li^(+)channels result in poor electrochemical properties.Herein,a functional supramolecular combination(CD-TFSI)consisting of activeβ-cyclodextrin(CD)supramolecular with self-assembled LiTFSI salt is selected as an interface modifier to coat LLZTO fillers.Benefiting from vast H-bonds formed betweenβ-CD and PEO matrix and/or LLZTO,homogeneous dispersion and tight interface contact are obtained.Moreover,^(6)Li NMR spectra confirm a new Li^(+)transmission pathway from PEO matrix to LLZTO ceramic then to PEO matrix in the as-prepared PEO/LLZTO@CD-TFSI CPEs due to the typical cavity structure ofβ-CD.As a proof,the conductivity is increased from 5.3×10^(-4)S cm^(-1)to 8.7×10^(-4)S cm^(-1)at 60℃,the Li^(+)transference number is enhanced from 0.38 to 0.48,and the electrochemical stability window is extended to 5.1 V versus Li/Li^(+).Li‖LiFePO_(4)CR2032 coin full cells and pouch cells prove the practical application of the as-prepared PEO/LLZTO@CD-TFSI CPEs.This work offers a new strategy of interface modifying LLZTO fillers with functional supramolecular combination to optimize PEO/LLZTO CPEs for solid lithium batteries.
基金supported by the National Science Foundation(Grant No.CMMI-1901582)supported by the Nuclear Research and Development Program of the National Research Foundation of Korea(Grant No.2024-M2E3A2007963)the Korea Electric Power Corporation(Grant No.R22XO05-05).
文摘Degradation of rock mass produced by rock blasting,stress relief,and other causes is an important factor in the assessment of rock strength.Quantified as a disturbance factor,such degradation varies depending on blasting control,stress state and stress relief,and rock mass quality.This study focuses on the impact of disturbance on the safety of slopes.The disturbance in the rock mass is characterized by the geometry of the disturbed zone,its size,the magnitude,and the decaying rate with the distance away from the slope surface.A method accounting for decay of rock disturbance is presented.A study of the impact of rock disturbance characteristics on the quantitative stability measures of slopes was carried out.These characteristics included disturbed zone geometry,its thickness,the maximum magnitude of the disturbance factor,and the rate of disturbance decaying.The thickness of the disturbed zone and the maximum factor of disturbance were found to have the greatest impact.For example,the factor of safety for a 45slope in low-quality rock mass can decrease from 1.96 to 1.09 as the thickness of the disturbed zone increases from 1/4 of slope height H to the double of H and the maximum disturbance factor increases from 0.5 to 1.Uniform thickness of a disturbed zone was found to yield more conservative outcomes than the triangular zones did.The critical failure surfaces were found to be shallow for high rates of disturbance decay,and they were the deepest for spatially uniform disturbance factors.
基金the National Natural Science Foundation of China(Nos.22209095 and 22238004).
文摘Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.
文摘The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the development of four soft computing models:YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJCSA-MLPnet.First of all,the Yeo-Johnson(YJ)transformation technique was used to stabilize the variance of data and make it more suitable for parametric statistical models that assume normality and equal variances.This technique is expected to improve the accuracy of friction angle prediction models.The friction angle prediction models then utilized multi-layer perceptron neural networks(MLPnet)and metaheuristic optimization algorithms to further enhance performance,including flower pollination algorithm(FPA),coral reefs optimization(CRO),ant colony optimization continuous(ACOC),and cuckoo search algorithm(CSA).The prediction models without the YJ technique,i.e.FPA-MLPnet,CRO-MLPnet,ACOC-MLPnet,and CSA-MLPnet,were then compared to those with the YJ technique,i.e.YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJ-CSA-MLPnet.Among these,the YJ-CRO-MLPnet model demonstrated superior reliability,achieving an accuracy of up to 83%in predicting the friction angle of clay in practical engineering scenarios.This improvement is significant,as it represents an increase from 1.3%to approximately 20%compared to the models that did not utilize the YJ transformation technique.
文摘NiO_(x)as a hole transport material for inverted perovskite solar cells has received great attention owing to its high transparency,low fabrication temperature,and superior stability.However,the mismatched energy levels and possible redox reactions at the NiO_(x)/perovskite interface severely limit the performance of NiO_(x) based inverted perovskite solar cells.Herein,we introduce a p-type self-assembled monolayer between NiO_(x)and perovskite layers to modify the interface and block the undesirable redox reaction between perovskite and NiO_(x)The selfassembled monolayer molecules all contain phosphoric acid function groups,which can be anchored onto the NiOr surface and passivate the surface defect.Moreover,the introduction of self-assembled monolayers can regulate the energy level structure of NiO_(x),reduce the interfacial band energy offset,and hence promote the hole transport from perovskite to NiO_(x)layer.Consequently,the device performance is significantly enhanced in terms of both power conversion efficiency and stability.
文摘The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.