The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related ...The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related literature,this paper discussed the present situation about the treatment of the solid waste using stabilization/solidification technology;meanwhile we have a variety of outlooks on the future of the stabilization/solidification technology.展开更多
The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related ...The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related literature,this paper discussed the present situation about the treatment of the solid waste using stabilization/solidification technology;meanwhile we have a variety of outlooks on the future of the stabilization/solidification technology.展开更多
Tin mine tailings(TMT)and fuming slag(FS)contain many heavy metals(As,Cr,Cu,Zn and Mn)that cause severe pollution to the environment.Herein,geopolymers were prepared using TMT,FS and flue gas desulfurization gypsum(FG...Tin mine tailings(TMT)and fuming slag(FS)contain many heavy metals(As,Cr,Cu,Zn and Mn)that cause severe pollution to the environment.Herein,geopolymers were prepared using TMT,FS and flue gas desulfurization gypsum(FGDG)to immobilize heavy metals,and their compressive strength and heavy metal leaching toxicity were investigated.It was first determined that T4F5(TMT:FS=4:5)sample exhibited the highest compressive strength(7.83 MPa).T4F5 achieved 95%immobilization efficiency for As and Cr,and nearly 100%for Cu,Zn and Mn,showing good immobilization performance.A series of characterization analyses showed that heavy metal cations can balance the charge in the geopolymer and replace Al in the geopolymer structure to form covalent bonds.In addition,about 2%–20%of heavy metal Fe was immobilized in hydration products,heavy metal hydroxides and non-bridging Si–O and Al–O coordination with silica-aluminate matrices.AsO_(3)^(3−) was oxidized into AsO_(4)^(3−),which may form Ca–As or Fe–As precipitates.Cr_(2)O_(7)^(2−)was converted to CrO_(4)^(2−)under alkaline environment and then combined with OH−to form Cr(OH)3 precipitates.Mn^(2+)may react directly with dissolved silicate to form Mn_(2)SiO_(4) and also form Mn(OH)_(2) precipitates.The unstable Mn(OH)_(2) can be further oxidized to MnO_(2).The heavy metal cations were immobilized in the silicoaluminate lattice,while the anions tended to form insoluble precipitates.These results may benefit the industry and government for better handling of TMT,FS and solid wastes containing the abovementioned five heavy metals.展开更多
Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,a...Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers.展开更多
Correction to:Waste Disposal&Sustainable Energy(2022)4:69-74 https://doi.0rg/10.1007/s42768-022-00102-6 The section‘Conflict of Interest'has been amended:"Jianhua Yan is the Editor-in-Chief of Waste Disp...Correction to:Waste Disposal&Sustainable Energy(2022)4:69-74 https://doi.0rg/10.1007/s42768-022-00102-6 The section‘Conflict of Interest'has been amended:"Jianhua Yan is the Editor-in-Chief of Waste Disposal&Sustainable Energy,Qunxing Huang is the Associate Editor of Waste Disposal&Sustainable Energy,Lei Wang is an Editorial Board Member of Waste Disposal&Sustainable Energy.'The revised Conflict of Interest'is as follows:Jianhua Yan is the Editor-in-Chief of Waste Disposal&Sustainable Energy.展开更多
Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in ...Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.展开更多
A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL...A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.展开更多
Non-equilibrium solidification structures of Cu55Ni45 and Cu55Ni43Co2 alloys were prepared by the molten glass purification cycle superheating method.The variation of the recalescence phenomenon with the degree of und...Non-equilibrium solidification structures of Cu55Ni45 and Cu55Ni43Co2 alloys were prepared by the molten glass purification cycle superheating method.The variation of the recalescence phenomenon with the degree of undercooling in the rapid solidification process was investigated using an infrared thermometer.The addition of the Co element affected the evolution of the recalescence phenomenon in Cu-Ni alloys.The images of the solid-liquid interface migration during the rapid solidification of supercooled melts were captured by using a high-speed camera.The solidification rate of Cu-Ni alloys,with the addition of Co elements,was explored.Finally,the grain refinement structure with low supercooling was characterised using electron backscatter diffraction(EBSD).The effect of Co on the microstructural evolution during nonequilibrium solidification of Cu-Ni alloys under conditions of small supercooling is investigated by comparing the microstructures of Cu55Ni45 and Cu55Ni43Co2 alloys.The experimental results show that the addition of a small amount of Co weakens the recalescence behaviour of the Cu55Ni45 alloy and significantly reduces the thermal strain in the rapid solidification phase.In the rapid solidification phase,the thermal strain is greatly reduced,and there is a significant increase in the characteristic undercooling degree.Furthermore,the addition of Co and the reduction of Cu not only result in a lower solidification rate of the alloy,but also contribute to the homogenisation of the grain size.展开更多
The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy ...The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy samples were analyzed.It is found that the rapidly solidified alloy has undergone twice grain refinement during the undercooling process.Characterization and significance of the maximum undercooling refinement structure of Cu60Ni35Co5 at T=253 K were analyzed.High-density defects were observed,such as dislocations,stacking faults networks,and twinning structures.The standard FCC diffraction pattern represents that it is still a single-phase structure.Based on the metallographic diagram,EBSD and TEM data analysis,it is illustrated that the occurrence of grain refinement under high undercooling is due to stress induced recrystallization.In addition,the laser cladding technology is used to coat Co-based alloy(Stellite12) coating on 304 stainless steel substrate;the microstructure of the coating cross-section was analyzed.It was found that the microstructure of the cross-section is presented as columnar crystals,planar crystals,and disordered growth direction,so that the coating has better hardness and wear resistance.By electrochemical corrosion of the substrate and coating,it can be seen that the Co and Cr elements present in the coating are more likely to form a dense passivation film,which improved the corrosion resistance of the coating.展开更多
This study examines the stabilization issue of extended chained nonholonomic systems(ECNSs)with external disturbance.Unlike the existing approaches,we transform the considered system into a fully actuated system(FAS)m...This study examines the stabilization issue of extended chained nonholonomic systems(ECNSs)with external disturbance.Unlike the existing approaches,we transform the considered system into a fully actuated system(FAS)model,simplifying the stabilizing controller design.We implement a separate controller design and propose exponential stabilization controller and finite-time stabilization controller under finite-time disturbance observer(FTDO)for the two system inputs.In addition,we discuss the specifics of global stabilization control design.Our approach demonstrates that two system states exponentially or asymptotically converge to zero under the provided switching stabilization control strategy,while all other system states converge to zero within a finite time.展开更多
Sub-rapid solidification has the potential to enhance the columnar structure and the magnetic property of electrical steels.However,research on the hot deformation behavior of sub-rapid solidified non-oriented electri...Sub-rapid solidification has the potential to enhance the columnar structure and the magnetic property of electrical steels.However,research on the hot deformation behavior of sub-rapid solidified non-oriented electrical steel,particularly at varying strain rates,has yet to be fully understood.The effect of thermal compression on the microstructure and mechanical properties of 3.15 wt.%Si non-oriented electrical steel strips produced through a strip casting simulator was systematically investigated.The findings reveal that increasing the deformation temperature enhances grain recrystallization,while the peak stress decreases with higher temperature.Furthermore,a lower strain rate favors dynamic recrystallization and reduces thermal stress.It can be seen that sub-rapid solidification can effectively reduce the thermal activation energy of non-oriented electrical steel,and the thermal activation energy is calculated to be 204.411 kJ/mol.In addition,the kinetic models for the dynamic recrystallization volume fraction of the studied 3.15 wt.%Si non-oriented electrical steel were established.展开更多
Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existi...Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.展开更多
The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn-4Si al-loy through a high solidification cooling rate(SCR).According to the results,by increasing th...The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn-4Si al-loy through a high solidification cooling rate(SCR).According to the results,by increasing the SCR from 2.0 to 59.5℃/s the average size of primary Si particles and that of the grains reduced from 76.1 and 3780μm to less than about 14.6 and 460μm,respectively.Augment-ing the SCR also enhanced the microstructural homogeneity,decreased the porosity content(by 50%),and increased the matrix hardness(by 36%).These microstructural changes enhanced the tribological behavior.For instance,under the applied pressure of 0.5 MPa,an in-crease in the SCR from 2.0 to 59.5℃/s decreased the wear rate and the average friction coefficient of the alloy by 57%and 23%,respect-ively.The wear mechanism was also changed from the severe delamination,adhesion,and abrasion in the slowly-cooled alloy to the mild tribolayer delamination/abrasion in the high-cooling-rate-solidified sample.展开更多
The prevention of hot cracking formation is of utmost importance in the production of the new Ni-Co based superalloys through the utilization of the electron beam smelting layered solidification technique(EBSL),as it ...The prevention of hot cracking formation is of utmost importance in the production of the new Ni-Co based superalloys through the utilization of the electron beam smelting layered solidification technique(EBSL),as it ensures exceptional homogeneity and dependable consistency of the specimens.In contrast to previous studies that focused on minimizing the liquid film and solidification range,our methodology adopts a distinct approach.In this research,a novel methodology was employed to mitigate internal stresses through the implementation of equiaxed grain layers via an alternately reduced cooling method.This ultimately resulted in the elimination of hot cracking.To be more specific,the transition from a columnar to an equiaxed structure was observed during the layer-by-layer construction process in the fabrication of the new Ni-Co based superalloy in EBSL.The EBSL-Ni-Co superalloy,when subjected to the alternating reduction cooling method,exhibited an internal stress of 49 MPa.This value represents a significant reduction of 83.8%compared to the internal stress observed when employing the linear reduction cooling method.Additionally,the solvus temperature of theγ-γ’eutectic phases in EBSL-Ni-Co superalloys produced by the alternating reduction cooling method is significantly higher.Intriguingly,the Nth layer of the EBSL-Ni-Co based superalloys produced by EBSL simultaneously heats treated with the preceding layers.And the low melting point phase gradually dissolved back into the matrix.The implementation of an alternating reduced cooling method successfully mitigated the formation of the liquid film in theγ-γ’eutectic phase and the buildup of internal stresses in the EBSL-Ni-Co superalloy during its manufacturing process.These discoveries open up a novel preparation procedure pathway for the manufacture of crack-free superalloys with superior mechanical characteristics using EBSL.展开更多
Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order obs...Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order observer,based on homogeneous domination theory together with the adding a power integrator method,an output feedback controller is developed guarantee the equilibrium of the closed system globally uniformly asymptotically stable.展开更多
The obvious grain refinement of the primary MnSb phase has been observed in the Mn-89.7 wt%Sb alloy directionally solidified under a high-gradient magnetic field.With the application of a high-gradient magnetic field,...The obvious grain refinement of the primary MnSb phase has been observed in the Mn-89.7 wt%Sb alloy directionally solidified under a high-gradient magnetic field.With the application of a high-gradient magnetic field,the morphology of the primary MnSb phase transformed from developed dendritic-like to equiaxed-like,and the grain size decreased by approximately 93%.Refinement of the primary MnSb phase can be attributed to the constituent supercooling in front of the solidification interface,which promoted nucleation of the primary MnSb phase.The constituent supercooling can be linked to the enrichment of the Mn solute induced by the magnetic force and the Lorentz force that drove Mn solute migration and suppressed convection.展开更多
Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the ...Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed.展开更多
Dear Editor,This letter addresses the passivity-based mean square exponential stabilization problem for switched stochastic nonlinear systems.A concept of generalized small-time norm-observability is presented and an ...Dear Editor,This letter addresses the passivity-based mean square exponential stabilization problem for switched stochastic nonlinear systems.A concept of generalized small-time norm-observability is presented and an appropriate test condition is also provided.For pre-given passivity rate and average dwell time,a set of feedback controllers is designed by use of the passivity property.展开更多
Dear Editor,This letter deals with the set stabilization of stochastic Boolean control networks(SBCNs)by the pinning control strategy,which is to realize the full control for systems by imposing control inputs on a fr...Dear Editor,This letter deals with the set stabilization of stochastic Boolean control networks(SBCNs)by the pinning control strategy,which is to realize the full control for systems by imposing control inputs on a fraction of agents.展开更多
文摘The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related literature,this paper discussed the present situation about the treatment of the solid waste using stabilization/solidification technology;meanwhile we have a variety of outlooks on the future of the stabilization/solidification technology.
文摘The number of hazardous waste in our country increased dramatically in recent years,stabilization/solidification technology begins to attract a wide spread attention by domestic scholars.Based on the domestic related literature,this paper discussed the present situation about the treatment of the solid waste using stabilization/solidification technology;meanwhile we have a variety of outlooks on the future of the stabilization/solidification technology.
基金financially supported by the National Key R&D Program of China(No.2019YFC1904202)the State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming(No.CNMRCUKF20)the Center for Analysis and Testing of Kunming University of Science and Technology(No.2020P20171130007).
文摘Tin mine tailings(TMT)and fuming slag(FS)contain many heavy metals(As,Cr,Cu,Zn and Mn)that cause severe pollution to the environment.Herein,geopolymers were prepared using TMT,FS and flue gas desulfurization gypsum(FGDG)to immobilize heavy metals,and their compressive strength and heavy metal leaching toxicity were investigated.It was first determined that T4F5(TMT:FS=4:5)sample exhibited the highest compressive strength(7.83 MPa).T4F5 achieved 95%immobilization efficiency for As and Cr,and nearly 100%for Cu,Zn and Mn,showing good immobilization performance.A series of characterization analyses showed that heavy metal cations can balance the charge in the geopolymer and replace Al in the geopolymer structure to form covalent bonds.In addition,about 2%–20%of heavy metal Fe was immobilized in hydration products,heavy metal hydroxides and non-bridging Si–O and Al–O coordination with silica-aluminate matrices.AsO_(3)^(3−) was oxidized into AsO_(4)^(3−),which may form Ca–As or Fe–As precipitates.Cr_(2)O_(7)^(2−)was converted to CrO_(4)^(2−)under alkaline environment and then combined with OH−to form Cr(OH)3 precipitates.Mn^(2+)may react directly with dissolved silicate to form Mn_(2)SiO_(4) and also form Mn(OH)_(2) precipitates.The unstable Mn(OH)_(2) can be further oxidized to MnO_(2).The heavy metal cations were immobilized in the silicoaluminate lattice,while the anions tended to form insoluble precipitates.These results may benefit the industry and government for better handling of TMT,FS and solid wastes containing the abovementioned five heavy metals.
基金Funded by the National Natural Science Foundation of China(Nos.52074245,52374416 and 52202029)the China Postdoctoral Science Foundation(No.2022M721058)。
文摘Up to 1.5wt%of Cr(Ⅲ)salts(CrCl_(3),and Cr_(2)O_(3))and Cr(Ⅵ)salts(Na_(2)CrO_(4),and CaCr_(2)O_(7))were incorporated into red mud-based geopolymers,respectively.The solidification/stabilization,compressive strength,and durability of the Cr-containing geopolymers were investigated.The experimental results indicate that the red mud-based geopolymer could effectively solidify/stabilize different types of Cr salts with solidification/stabilization rates of above 99.61%.Geopolymers are environmentally safe when the dosage of CaCr_(2)O_(7)is≤1.0wt%,or the dosage of CrCl_(3),Cr_(2)O_(3),and Na_(2)CrO_(4)is≤1.5wt%,respectively.The effects of Cr salts on the compressive strength varies with the type and content of Cr salts.The freeze-thaw cycle is more destructive to geopolymer properties than sulfate attack or acid rain erosion.The solidification/stabilization of Cr is mainly attributed to the following reasons:a)The chemical binding of Cr is related to the formation of Cr-containing hydrates(eg,magnesiochromite((Mg,Fe)(Cr,Al)_(2)O_(4)))and doping into N-A-S-H gel and C-A-S-H gel framework;b)The physical effect is related to the encapsulation by the hydration products(e g,N-A-S-H gel and C-A-S-H gel).This study provides a reference for the treatment of hazardous Cr-containing wastes by solid waste-based geopolymers.
文摘Correction to:Waste Disposal&Sustainable Energy(2022)4:69-74 https://doi.0rg/10.1007/s42768-022-00102-6 The section‘Conflict of Interest'has been amended:"Jianhua Yan is the Editor-in-Chief of Waste Disposal&Sustainable Energy,Qunxing Huang is the Associate Editor of Waste Disposal&Sustainable Energy,Lei Wang is an Editorial Board Member of Waste Disposal&Sustainable Energy.'The revised Conflict of Interest'is as follows:Jianhua Yan is the Editor-in-Chief of Waste Disposal&Sustainable Energy.
基金supported by the National Key Research and Development Program of China(2021YFB3702005)the National Natural Science Foundation of China(52304352)+3 种基金the Central Government Guides Local Science and Technology Development Fund Projects(2023JH6/100100046)2022"Chunhui Program"Collaborative Scientific Research Project(202200042)the Doctoral Start-up Foundation of Liaoning Province(2023-BS-182)the Technology Development Project of State Key Laboratory of Metal Material for Marine Equipment and Application[HGSKL-USTLN(2022)01].
文摘Macrosegregation is a critical factor that limits the mechanical properties of materials.The impact of equiaxed crystal sedimentation on macrosegregation has been extensively studied,as it plays a significant role in determining the distribution of alloying elements and impurities within a material.To improve macrosegregation in steel connecting shafts,a multiphase solidification model that couples melt flow,heat transfer,microstructure evolution,and solute transport was established based on the volume-averaged Eulerian-Eulerian approach.In this model,the effects of liquid phase,equiaxed crystals,columnar dendrites,and columnar-to-equiaxed transition(CET)during solidification and evolution of microstructure can be considered simultaneously.The sedimentation of equiaxed crystals contributes to negative macrosegregation,where regions between columnar dendrites and equiaxed crystals undergo significant A-type positive macrosegregation due to the CET.Additionally,noticeable positive macrosegregation occurs in the area of final solidification in the ingot.The improvement in macrosegregation is beneficial for enhancing the mechanical properties of connecting shafts.To mitigate the thermal convection of molten steel resulting from excessive superheating,reducing the superheating during casting without employing external fields or altering the design of the ingot mold is indeed an effective approach to control macrosegregation.
基金supported by the National Natural Science Foundation of China under Grant 62034002 and 62374026.
文摘A frequency servo system-on-chip(FS-SoC)featuring output power stabilization technology is introduced in this study for high-precision and miniaturized cesium(Cs)atomic clocks.The proposed power stabilization loop(PSL)technique,incorporating an off-chip power detector(PD),ensures that the output power of the FS-SoC remains stable,mitigating the impact of power fluctuations on the atomic clock's stability.Additionally,a one-pulse-per-second(1PPS)is employed to syn-chronize the clock with GPS.Fabricated using 65 nm CMOS technology,the measured phase noise of the FS-SoC stands at-69.5 dBc/Hz@100 Hz offset and-83.9 dBc/Hz@1 kHz offset,accompanied by a power dissipation of 19.7 mW.The Cs atomic clock employing the proposed FS-SoC and PSL obtains an Allan deviation of 1.7×10^(-11) with 1-s averaging time.
文摘Non-equilibrium solidification structures of Cu55Ni45 and Cu55Ni43Co2 alloys were prepared by the molten glass purification cycle superheating method.The variation of the recalescence phenomenon with the degree of undercooling in the rapid solidification process was investigated using an infrared thermometer.The addition of the Co element affected the evolution of the recalescence phenomenon in Cu-Ni alloys.The images of the solid-liquid interface migration during the rapid solidification of supercooled melts were captured by using a high-speed camera.The solidification rate of Cu-Ni alloys,with the addition of Co elements,was explored.Finally,the grain refinement structure with low supercooling was characterised using electron backscatter diffraction(EBSD).The effect of Co on the microstructural evolution during nonequilibrium solidification of Cu-Ni alloys under conditions of small supercooling is investigated by comparing the microstructures of Cu55Ni45 and Cu55Ni43Co2 alloys.The experimental results show that the addition of a small amount of Co weakens the recalescence behaviour of the Cu55Ni45 alloy and significantly reduces the thermal strain in the rapid solidification phase.In the rapid solidification phase,the thermal strain is greatly reduced,and there is a significant increase in the characteristic undercooling degree.Furthermore,the addition of Co and the reduction of Cu not only result in a lower solidification rate of the alloy,but also contribute to the homogenisation of the grain size.
基金Funded by the Basic Research Projects in Shanxi Province(No.202103021224183)。
文摘The effect of the gradient content of Co element on the solidification process of Cu-based alloy under deep under cooling conditions was explored.The non-equilibrium solidification structure of the under cooled alloy samples were analyzed.It is found that the rapidly solidified alloy has undergone twice grain refinement during the undercooling process.Characterization and significance of the maximum undercooling refinement structure of Cu60Ni35Co5 at T=253 K were analyzed.High-density defects were observed,such as dislocations,stacking faults networks,and twinning structures.The standard FCC diffraction pattern represents that it is still a single-phase structure.Based on the metallographic diagram,EBSD and TEM data analysis,it is illustrated that the occurrence of grain refinement under high undercooling is due to stress induced recrystallization.In addition,the laser cladding technology is used to coat Co-based alloy(Stellite12) coating on 304 stainless steel substrate;the microstructure of the coating cross-section was analyzed.It was found that the microstructure of the cross-section is presented as columnar crystals,planar crystals,and disordered growth direction,so that the coating has better hardness and wear resistance.By electrochemical corrosion of the substrate and coating,it can be seen that the Co and Cr elements present in the coating are more likely to form a dense passivation film,which improved the corrosion resistance of the coating.
基金partially supported by the National Natural Science Foundation of China(62173207,62073187)the Science Center Program of the National Natural Science Foundation of China(62188101)+1 种基金the China Postdoctoral Science Special Foundation(2023T160334)the Youth Innovation Team Project of Colleges and Universities in Shandong Province(2022KJ176)。
文摘This study examines the stabilization issue of extended chained nonholonomic systems(ECNSs)with external disturbance.Unlike the existing approaches,we transform the considered system into a fully actuated system(FAS)model,simplifying the stabilizing controller design.We implement a separate controller design and propose exponential stabilization controller and finite-time stabilization controller under finite-time disturbance observer(FTDO)for the two system inputs.In addition,we discuss the specifics of global stabilization control design.Our approach demonstrates that two system states exponentially or asymptotically converge to zero under the provided switching stabilization control strategy,while all other system states converge to zero within a finite time.
基金The National Natural Science Foundation of China(Nos.52130408 and 52204356)the Natural Science Foundation of Hunan Province,China(2023JJ40762)the National Key Research and Development Program of China(No.2021YFB3702401)are greatly acknowledged.
文摘Sub-rapid solidification has the potential to enhance the columnar structure and the magnetic property of electrical steels.However,research on the hot deformation behavior of sub-rapid solidified non-oriented electrical steel,particularly at varying strain rates,has yet to be fully understood.The effect of thermal compression on the microstructure and mechanical properties of 3.15 wt.%Si non-oriented electrical steel strips produced through a strip casting simulator was systematically investigated.The findings reveal that increasing the deformation temperature enhances grain recrystallization,while the peak stress decreases with higher temperature.Furthermore,a lower strain rate favors dynamic recrystallization and reduces thermal stress.It can be seen that sub-rapid solidification can effectively reduce the thermal activation energy of non-oriented electrical steel,and the thermal activation energy is calculated to be 204.411 kJ/mol.In addition,the kinetic models for the dynamic recrystallization volume fraction of the studied 3.15 wt.%Si non-oriented electrical steel were established.
基金supported by the National Natural Science Foundation of China(61833005)the Humanities and Social Science Fund of Ministry of Education of China(23YJAZH031)+1 种基金the Natural Science Foundation of Hebei Province of China(A2023209002,A2019209005)the Tangshan Science and Technology Bureau Program of Hebei Province of China(19130222g)。
文摘Discrete feedback control was designed to stabilize an unstable hybrid neutral stochastic differential delay system(HNSDDS) under a highly nonlinear constraint in the H_∞ and exponential forms.Nevertheless,the existing work just adapted to autonomous cases,and the obtained results were mainly on exponential stabilization.In comparison with autonomous cases,non-autonomous systems are of great interest and represent an important challenge.Accordingly,discrete feedback control has here been adjusted with a time factor to stabilize an unstable non-autonomous HNSDDS,in which new Lyapunov-Krasovskii functionals and some novel technologies are adopted.It should be noted,in particular,that the stabilization can be achieved not only in the routine H_∞ and exponential forms,but also the polynomial form and even a general form.
文摘The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn-4Si al-loy through a high solidification cooling rate(SCR).According to the results,by increasing the SCR from 2.0 to 59.5℃/s the average size of primary Si particles and that of the grains reduced from 76.1 and 3780μm to less than about 14.6 and 460μm,respectively.Augment-ing the SCR also enhanced the microstructural homogeneity,decreased the porosity content(by 50%),and increased the matrix hardness(by 36%).These microstructural changes enhanced the tribological behavior.For instance,under the applied pressure of 0.5 MPa,an in-crease in the SCR from 2.0 to 59.5℃/s decreased the wear rate and the average friction coefficient of the alloy by 57%and 23%,respect-ively.The wear mechanism was also changed from the severe delamination,adhesion,and abrasion in the slowly-cooled alloy to the mild tribolayer delamination/abrasion in the high-cooling-rate-solidified sample.
基金support from the National Key Research and Development Program of China(Grant No.2019YFA0705300)the National Natural Science Foundation of China(GrantNo.52004051)andthe Innovation Team Projectfor Key Fields of Dalian(Grant No.2019RT13).
文摘The prevention of hot cracking formation is of utmost importance in the production of the new Ni-Co based superalloys through the utilization of the electron beam smelting layered solidification technique(EBSL),as it ensures exceptional homogeneity and dependable consistency of the specimens.In contrast to previous studies that focused on minimizing the liquid film and solidification range,our methodology adopts a distinct approach.In this research,a novel methodology was employed to mitigate internal stresses through the implementation of equiaxed grain layers via an alternately reduced cooling method.This ultimately resulted in the elimination of hot cracking.To be more specific,the transition from a columnar to an equiaxed structure was observed during the layer-by-layer construction process in the fabrication of the new Ni-Co based superalloy in EBSL.The EBSL-Ni-Co superalloy,when subjected to the alternating reduction cooling method,exhibited an internal stress of 49 MPa.This value represents a significant reduction of 83.8%compared to the internal stress observed when employing the linear reduction cooling method.Additionally,the solvus temperature of theγ-γ’eutectic phases in EBSL-Ni-Co superalloys produced by the alternating reduction cooling method is significantly higher.Intriguingly,the Nth layer of the EBSL-Ni-Co based superalloys produced by EBSL simultaneously heats treated with the preceding layers.And the low melting point phase gradually dissolved back into the matrix.The implementation of an alternating reduced cooling method successfully mitigated the formation of the liquid film in theγ-γ’eutectic phase and the buildup of internal stresses in the EBSL-Ni-Co superalloy during its manufacturing process.These discoveries open up a novel preparation procedure pathway for the manufacture of crack-free superalloys with superior mechanical characteristics using EBSL.
基金supported by the National Natural Science Foundation of China(62103175)Taishan Scholar Project of Shandong Province of China。
文摘Dear Editor,to This letter deals with the output feedback stabilization of a class of high-order nonlinear time-delay systems with more general low-order and high-order nonlinearities.By constructing reduced-order observer,based on homogeneous domination theory together with the adding a power integrator method,an output feedback controller is developed guarantee the equilibrium of the closed system globally uniformly asymptotically stable.
基金supported by the National Key R&D Program of China(Grant No.2021YFB3501404)the fund of the State Key Laboratory of Solidification Processing in NWPU(Grant No.SKLSP202101).
文摘The obvious grain refinement of the primary MnSb phase has been observed in the Mn-89.7 wt%Sb alloy directionally solidified under a high-gradient magnetic field.With the application of a high-gradient magnetic field,the morphology of the primary MnSb phase transformed from developed dendritic-like to equiaxed-like,and the grain size decreased by approximately 93%.Refinement of the primary MnSb phase can be attributed to the constituent supercooling in front of the solidification interface,which promoted nucleation of the primary MnSb phase.The constituent supercooling can be linked to the enrichment of the Mn solute induced by the magnetic force and the Lorentz force that drove Mn solute migration and suppressed convection.
基金supported by the National Natural Science Foundation of China(No.52274319)。
文摘Occasional irregular initial solidification phenomena,including stickers,deep oscillation marks,depressions,and surface cracks of strand shells in continuous casting molds,are important limitations for developing the high-efficiency continuous casting of steels.The application of mold thermal monitoring(MTM) systems,which use thermocouples to detect and respond to temperature variations in molds,has become an effective method to address irregular initial solidification phenomena.Such systems are widely applied in numerous steel companies for sticker breakout prediction.However,monitoring the surface defects of strands remains immature.Hence,indepth research is necessary to utilize the potential advantages and comprehensive monitoring of MTM systems.This paper summarizes what is included in the irregular initial solidification phenomena and systematically reviews the current state of research on these phenomena by the MTM systems.Furthermore,the influences of mold slag behavior on monitoring these phenomena are analyzed.Finally,the remaining problems of the formation mechanisms and investigations of irregular initial solidification phenomena are discussed,and future research directions are proposed.
基金supported by the National Natural Science Foundation of China(U23A20324,62201510)the 111 Project(B16009)+1 种基金the Henan Provincial Department of Science and Technology Research Project(212102310299)the Open Foundation of Henan Key Laboratory of General Aviation Technology(ZHKF-230206)。
文摘Dear Editor,This letter addresses the passivity-based mean square exponential stabilization problem for switched stochastic nonlinear systems.A concept of generalized small-time norm-observability is presented and an appropriate test condition is also provided.For pre-given passivity rate and average dwell time,a set of feedback controllers is designed by use of the passivity property.
基金supported by the National Key Research and Development Project of China(2020YFA0714301)the National Natural Science Foundation of China(61833005)。
文摘Dear Editor,This letter deals with the set stabilization of stochastic Boolean control networks(SBCNs)by the pinning control strategy,which is to realize the full control for systems by imposing control inputs on a fraction of agents.