The work functions of the (110) and (10(3) surfaces of LaB6 are determined from ambient pressure to 39.1 GPa. The work function of the (110) surface slowly decreases but that of the (100) surface remains at a...The work functions of the (110) and (10(3) surfaces of LaB6 are determined from ambient pressure to 39.1 GPa. The work function of the (110) surface slowly decreases but that of the (100) surface remains at a relatively constant value. To determine the reason for this difference, the electron density distribution (EDD) is determined from high-pressure single-crystal x-ray diffraction data by the maximum entropy method. The EDD results show that the chemical bond properties in LaB6 play a key role also investigated by single-crystal x-ray diffraction. In observed from ambient pressure to 39.1 GPa. The structural stability of LaB6 under high pressure is this study, no structural or electronic phase transition is展开更多
The titanium carbides are potential candidates to achieve both high hardness and refractory property. We carried out a structural search for titanium carbides at three pressures of 0 GPa, 30 GPa and 50 GPa. A phase di...The titanium carbides are potential candidates to achieve both high hardness and refractory property. We carried out a structural search for titanium carbides at three pressures of 0 GPa, 30 GPa and 50 GPa. A phase diagram of the Ti-C system at 0 K was obtained by elucidating formation enthalpies as a function of compositions, and their mechanical and metallic properties of titanium carbides were investigated sys- tematically. We also discussed the relation of titanium concentration to the both mechanical and metallic properties of titanium carbides. It has been found that the average valence electron density and tractil-ity improved at higher concentrations of titanium, while the degree of covalent bonding directionality decreased. To this effect, the hardness of titanium carbide decreases as the content of titanium increases. Our results indicated that the titanium content significantly affected the metallic properties of the Ti-C system.展开更多
Polycrystalline diamond compacts(PDC), which are composed of diamond and WC/Co substrate, and synthesized at high pressure and high temperature(HPHT), are widely applied as the tooth of drilling bit. However, the ...Polycrystalline diamond compacts(PDC), which are composed of diamond and WC/Co substrate, and synthesized at high pressure and high temperature(HPHT), are widely applied as the tooth of drilling bit. However, the thermal stability of PDC will be reduced when diamond transforms into graphite due to cobalt in PDC acting as a catalyst during the drilling work. In this study, a new three-layer structured PDC with enhanced thermal stability has been successfully synthesized at pressures of 5.5–7.0 GPa and temperatures of 1650–1750?C. In this structure, the diamond-Si C composite acts as the working layer,and the diamond-Si C-Co composite and WC/Co cements are as the intermediate layer and substrate,respectively. It is found that the initial oxidizing temperature of the three-layered PDC is enhanced up to820?C, which is significantly higher than that(~780?C) of the conventional PDC counterpart.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274030 and 11474281
文摘The work functions of the (110) and (10(3) surfaces of LaB6 are determined from ambient pressure to 39.1 GPa. The work function of the (110) surface slowly decreases but that of the (100) surface remains at a relatively constant value. To determine the reason for this difference, the electron density distribution (EDD) is determined from high-pressure single-crystal x-ray diffraction data by the maximum entropy method. The EDD results show that the chemical bond properties in LaB6 play a key role also investigated by single-crystal x-ray diffraction. In observed from ambient pressure to 39.1 GPa. The structural stability of LaB6 under high pressure is this study, no structural or electronic phase transition is
基金supported by the National Key Research and Development Program of China(Nos.2016YFB0700505,and2016YFB0701401)
文摘The titanium carbides are potential candidates to achieve both high hardness and refractory property. We carried out a structural search for titanium carbides at three pressures of 0 GPa, 30 GPa and 50 GPa. A phase diagram of the Ti-C system at 0 K was obtained by elucidating formation enthalpies as a function of compositions, and their mechanical and metallic properties of titanium carbides were investigated sys- tematically. We also discussed the relation of titanium concentration to the both mechanical and metallic properties of titanium carbides. It has been found that the average valence electron density and tractil-ity improved at higher concentrations of titanium, while the degree of covalent bonding directionality decreased. To this effect, the hardness of titanium carbide decreases as the content of titanium increases. Our results indicated that the titanium content significantly affected the metallic properties of the Ti-C system.
基金financial supports from the National Natural Science Foundation of China (No. 41572357)
文摘Polycrystalline diamond compacts(PDC), which are composed of diamond and WC/Co substrate, and synthesized at high pressure and high temperature(HPHT), are widely applied as the tooth of drilling bit. However, the thermal stability of PDC will be reduced when diamond transforms into graphite due to cobalt in PDC acting as a catalyst during the drilling work. In this study, a new three-layer structured PDC with enhanced thermal stability has been successfully synthesized at pressures of 5.5–7.0 GPa and temperatures of 1650–1750?C. In this structure, the diamond-Si C composite acts as the working layer,and the diamond-Si C-Co composite and WC/Co cements are as the intermediate layer and substrate,respectively. It is found that the initial oxidizing temperature of the three-layered PDC is enhanced up to820?C, which is significantly higher than that(~780?C) of the conventional PDC counterpart.