期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Tin dioxide buffer layer-assisted efficiency and stability of wide-bandgap inverted perovskite solar cells 被引量:2
1
作者 Bingbing Chen Pengyang Wang +3 位作者 Ningyu Ren Renjie Li Ying Zhao Xiaodan Zhang 《Journal of Semiconductors》 EI CAS CSCD 2022年第5期89-103,共15页
Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long... Inverted perovskite solar cells(IPSCs) have attracted tremendous research interest in recent years due to their applications in perovskite/silicon tandem solar cells. However, further performance improvements and long-term stability issues are the main obstacles that deeply hinder the development of devices. Herein, we demonstrate a facile atomic layer deposition(ALD) processed tin dioxide(SnO2) as an additional buffer layer for efficient and stable wide-bandgap IPSCs. The additional buffer layer increases the shunt resistance and reduces the reverse current saturation density, resulting in the enhancement of efficiency from 19.23% to 21.13%. The target device with a bandgap of 1.63 eV obtains open-circuit voltage of 1.19 V, short circuit current density of 21.86 mA/cm^(2), and fill factor of 81.07%. More importantly, the compact and stable SnO_(2) film invests the IPSCs with superhydrophobicity, thus significantly enhancing the moisture resistance. Eventually, the target device can maintain 90% of its initial efficiency after 600 h storage in ambient conditions with relative humidity of 20%–40% without encapsulation. The ALD-processed SnO_(2) provides a promising way to boost the efficiency and stability of IPSCs, and a great potential for perovskite-based tandem solar cells in the near future. 展开更多
关键词 atomic layer deposition tin dioxide additional buffer layer efficiency and stability inverted perovskite solar cells
下载PDF
Release characteristics and stabilization of heavy metals in antimony tailings in Yunnan Province,China
2
作者 LUO Guangfei ZHANG Jin +2 位作者 HAN Zhiwei OUYANG Jidi WU Pan 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3337-3352,共16页
The pollution caused by the mining and smelting of heavy metals is becoming an increasingly severe environmental problem.In this study,the environmental risks of mine tailings were explored using typical antimony tail... The pollution caused by the mining and smelting of heavy metals is becoming an increasingly severe environmental problem.In this study,the environmental risks of mine tailings were explored using typical antimony tailings(the depth of the sample taken from the ground to the deepest position of 120 cm)from the Zuoxiguo mine in Yunnan Province,Southwest China.The tailings were examined to explore the geological background,distribution characteristics,and release characteristics of heavy metals.Additionally,stabilizer treatments for heavy metals were investigated in consideration of waste treatment.The results showed that the contents of Sb and As(8.93×103 and 425 mg/kg,respectively)in the tailings were considerably higher than the local soil background values,suggesting that these metals pose a considerable threat to the surrounding environment.The geological background values of Cr,Cd,Pb,Cu,and Zn were relatively low.The results of static release showed that Sb,As,Cd,and Cr leached from the tailings more easily than Cu,Zn,and Pb under acidic conditions(pH=2.98).Geo-accumulation indices and potential ecological risk indices showed that Sb,As,Cd,and Pb were highly enriched in the tailings,whereas Cu,Cr,and Zn contents were relatively low.The single factor ecological risk index of the mining area showed that Sb and As are high ecological risk factors,whereas Cr,Cu,Zn,Cd,and Pb are not.The results of the orthogonal test results showed that by adding 15.0%(m/m)fly ash and 15.0%(m/m)zeolite powder to the quicklime and curing for 28 d,a significant stabilization effect was observed for Sb,As,and Pb.This study helps determine the priority control components for characteristic heavy metals in antimony tailings,and provides valuable insights regarding the formulation of appropriate mitigation strategies. 展开更多
关键词 Heavy metals Antimony mine Tailing dumps Environmental pollution Release characteristics Stabilization efficiency
下载PDF
Efficient stabilization of dredged sludge with high water content using an improved bio-carbonation of reactive magnesia cement method
3
作者 Rui Wang Chaosheng Tang +4 位作者 Xiaohua Pan Dianlong Wang Zhihao Dong Xiying Zhang Xiancai Lu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3760-3771,共12页
This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-dra... This study proposed an improved bio-carbonation of reactive magnesia cement(RMC)method for dredged sludge stabilization using the urea pre-hydrolysis strategy.Based on unconfined compression strength(UCS),pickling-drainage,and scanning electron microscopy(SEM)tests,the effects of prehydrolysis duration(T),urease activity(UA)and curing age(CA)on the mechanical properties and microstructural characteristics of bio-carbonized samples were systematically investigated and analyzed.The results demonstrated that the proposed method could significantly enhance urea hydrolysis and RMC bio-carbonation to achieve efficient stabilization of dredged sludge with 80%high water content.A significant strength increment of up to about 1063.36 kPa was obtained for the bio-carbonized samples after just 7 d of curing,which was 2.64 times higher than that of the 28-day cured ordinary Portland cement-reinforced samples.Both elevated T and UA could notably increase urea utilization ratio and carbonate ion yield,but the resulting surge in supersaturation also affected the precipitation patterns of hydrated magnesia carbonates(HMCs),which weakened the cementation effect of HMCs on soil particles and further inhibited strength enhancement of bio-carbonized samples.The optimum formula was determined to be the case of T?24 h and UA?10 U/mL for dredged sludge stabilization.A 7-day CA was enough for bio-carbonized samples to obtain stable strength,albeit slightly affected by UA.The benefits of high efficiency and water stability presented the potential of this method in achieving dredged sludge stabilization and resource utilization.This investigation provides informative ideas and valuable insights on implementing advanced bio-geotechnical techniques to achieve efficient stabilization of soft soil,such as dredged sludge. 展开更多
关键词 Reactive magnesia cement(RMC)biocarbonation Urea pre-hydrolysis Dredged sludge Efficient stabilization Unconfined compressive strength Microbially induced carbonate precipitation(MICP)
下载PDF
Rolling Partial Rescheduling with Dual Objectives for Single Machine Subject to Disruptions 被引量:3
4
作者 WANG Bing XI Yu-Geng 《自动化学报》 EI CSCD 北大核心 2006年第5期667-673,共7页
This paper discusses the single-machine rescheduling problem with efficiency and stability as criteria, where more than one disruption arises in large-scale dynamic circumstances. Partial rescheduling (PR) strategy is... This paper discusses the single-machine rescheduling problem with efficiency and stability as criteria, where more than one disruption arises in large-scale dynamic circumstances. Partial rescheduling (PR) strategy is adopted after each disruption and a rolling mechanism is driven by events in response to disruptions. Two kinds of objective functions are designed respectively for PR sub-problem involving in the interim and the terminal of unfinished jobs. The analytical result demonstrates that each local objective is consistent with the global one. Extensive computational experiment was performed and the computational results show that the rolling PR strategy with dual objectives can greatly improve schedule stability with little sacrifice in efficiency and provide a reasonable trade-off between solution quality and computational efforts. 展开更多
关键词 DISRUPTIONS efficiency and stability partial rescheduling rolling mechanism
下载PDF
Dual interfacial engineering for efficient Cs_(2)AgBiBr_(6) based solar cells 被引量:3
5
作者 Tao Luo Yalan Zhang +7 位作者 Xiaoming Chang Junjie Fang Tianqi Niu Jing Lu Yuanyuan Fan Zicheng Ding Kui Zhao Shengzhong(Frank)Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期372-378,I0013,共8页
The emerging lead-free halide double perovskite solar cells have attracted widespread attentions due to their long-term stability and non-toxicity, but suffer from the low device performance. One efficiencylimiting fa... The emerging lead-free halide double perovskite solar cells have attracted widespread attentions due to their long-term stability and non-toxicity, but suffer from the low device performance. One efficiencylimiting factor is the improper contacts between the halide double perovskite and anode/cathode electrodes. Here, we improve the efficiency and stability of the bismuth-halide double perovskite based solar cells by a synergistic interface design for both electron and hole transport layers(ETL/HTL). The results show that the modification of the TiO_2 ETL with a thin hydrophobic C60 layer and replacement of the lithium-doped small molecule HTL with an un-doped conjugated polymer lead to higher surface quality of perovskite film and better energy-level alignment at the contacts. As a result, the optimized device shows reduced trap density, suppressed charge recombination and enhanced charge extraction, leading to an increase of 69% in device efficiency. In addition, the device also exhibits superior stability in ambient environment, heat stress and light bias after interface optimization. This work provides an efficient strategy for the device optimization of the emerging lead-free perovskite solar cells. 展开更多
关键词 Perovskite solar cells Double perovskites Synergistic interfacial engineering efficiency and stability
下载PDF
Recent Progress of Layered Perovskite Solar Cells Incorporating Aromatic Spacers 被引量:1
6
作者 Yuping Gao Xiyue Dong Yongsheng Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期163-181,共19页
Layered two dimensional(2D) or quasi-2D perovskites are emerging photovoltaic materials due to their superior environment and structure stability in comparison with their 3D counterparts. The typical 2D perovskites ca... Layered two dimensional(2D) or quasi-2D perovskites are emerging photovoltaic materials due to their superior environment and structure stability in comparison with their 3D counterparts. The typical 2D perovskites can be obtained by cutting 3D perovskites along < 100 > orientation by incorporation of bulky organic spacers, which play a key role in the performance of 2D perovskite solar cells(PSCs). Compared with aliphatic spacers, aromatic spacers with high dielectric constant have the potential to decrease the dielectric and quantum confinement effect of 2D perovskites, promote efficient charge transport and reduce the exciton binding energy, all of which are beneficial for the photovoltaic performance of 2D PSCs. In this review, we aim to provide useful guidelines for the design of aromatic spacers for 2D perovskites. We systematically reviewed the recent progress of aromatic spacers used in 2D PSCs. Finally, we propose the possible design strategies for aromatic spacers that may lead to more efficient and stable 2D PSCs. 展开更多
关键词 Layered perovskite solar cells Aromatic spacers Quantum and dielectric confinement effects Charge transport efficiency and stability
下载PDF
Effect of Carrier Liquid on Electrorheological Performance and Stability of Oxalate Group-modified TiO2 Suspensions 被引量:1
7
作者 马宁 董旭峰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第4期854-861,共8页
By using oxalate group-modified TiO2 nanoparticles as the dispersing phase, different kinds of silicone oil with various viscosities and terminal groups(hydroxyl, hydrogen, and methyl) were used as the dispersing me... By using oxalate group-modified TiO2 nanoparticles as the dispersing phase, different kinds of silicone oil with various viscosities and terminal groups(hydroxyl, hydrogen, and methyl) were used as the dispersing media to prepare different electrorheological(ER) fluids. Their zero-field viscosity, yield stress under direct current electric fields, ER efficiency, shear stability, leakage current density, and sedimentation stability were tested to study the effect of carrier liquid on the properties of ER fluids. The results indicate that the zerofield viscosity, the yield stress, and the leakage current density increase with increasing viscosity of the silicone oils. The effects of the viscosity on the ER efficiency, the shear stability, and the sedimentation ratio depend on the competition between the viscous resistance and the aggregation of the particles. Among the three ER fluids prepared with silicone oil with different terminal groups, hydroxyl-terminated oil based sample has the highest zero-field viscosity, the highest field-induced yield stress and ER efficiency, the largest current density, and the best sedimentation stability. 展开更多
关键词 electrorheological fluids carrier liquid shear stability ER efficiency sedimentation stability
下载PDF
Enhanced efficiency and stability of triple-cation perovskite solar cells with CsPbI_(x)Br_(3−x)QDs“surface patches” 被引量:2
8
作者 Guang Yang Hengkai Zhang +4 位作者 Siqi Li Zhiwei Ren Guojia Fang Dangyuan Lei Gang Li 《SmartMat》 2022年第3期513-521,共9页
Perovskite solar cells(PSCs)with a light-harvesting three-dimensional perovskite bulk layer as backbone component have achieved great progress in performance.Nonradiative recombination is one major place to improve ef... Perovskite solar cells(PSCs)with a light-harvesting three-dimensional perovskite bulk layer as backbone component have achieved great progress in performance.Nonradiative recombination is one major place to improve efficiency and stability as they cause significant energy loss in PSCs.Additionally,an imperfection in grain boundaries will initiate device degradation.One of the most successful strategies to decrease nonradiative recombination in PSCs is the introduction of reduced dimensional perovskite(e.g.,perovskite quantum wells),benefiting the device's efficiency and stability tremendously.Here,instead of quantum wells,mixed-cation perovskites with ligand-contained CsPbBr_(x)I_(3−x)quantum dots(QDs)are prepared,which is shown to function as perovskite healing“surface patches.”Benefiting from the“surface patches”effect,the QDs-film shows reduced defects and enhancing film quality which lead to the excellent performance of solar cells(enhancing the power conversion efficiency from 19.21%of the control device to 21.71%[22.1%in reverse scan]). 展开更多
关键词 perovskite solar cells CsPbI_(x)I_(3−x)QDs healing“surface patches” efficiency and stability enhancement
原文传递
A-π-A structured non-fullerene acceptors for stable organic solar cells with efficiency over 17% 被引量:1
9
作者 Wei Liu Jun Yuan +9 位作者 Can Zhu Qingya Wei Songting Liang Huotian Zhang Guanhaojie Zheng Yunbin Hu Lei Meng Feng Gao Yongfang Li Yingping Zou 《Science China Chemistry》 SCIE EI CSCD 2022年第7期1374-1382,共9页
With the development of photovoltaic materials, especially the small molecule acceptors(SMAs), organic solar cells(OSCs)have made breakthroughs in power conversion efficiencies(PCEs). However, the stability of high-pe... With the development of photovoltaic materials, especially the small molecule acceptors(SMAs), organic solar cells(OSCs)have made breakthroughs in power conversion efficiencies(PCEs). However, the stability of high-performance OSCs remains a critical challenge for future technological applications. To tackle the inherent instability of SMA materials under the ambient conditions, much effort has been made to improve OSCs stability, including device modification and new materials design. Here we proposed a new electron acceptor design strategy and developed a “quasi-macromolecule”(QM) with an A-π-A structure,where the functionalized π-bridge is used as a linker between two SMAs(A), to improve the long-term stability without deteriorating device efficiencies. Such type of QMs enables excellent synthetic flexibility to modulate their optical/electrochemical properties, crystallization and aggregation behaviors by changing the A and π units. Moreover, QMs possess a unique long conjugated backbone combining high molecular weight over 3.5 k Da with high purity. Compared with the corresponding SMA BTP-4F-OD(Y6-OD), the devices based on newly synthesized A-π-A type acceptors QM1 and QM2 could exhibit better device stability and more promising PCEs of 17.05% and 16.36%, respectively. This kind of “molecular-framework”(A-π-A)structure provides a new design strategy for developing high-efficiency and-stability photovoltaic materials. 展开更多
关键词 A-π-A type quasi-macromolecule new molecular design strategy high efficiency and long-term stability organic solar cells
原文传递
China's Financial Reform in the Context of Financial Stability and Efficiency
10
作者 Sun Tao 《China & World Economy》 SCIE 2003年第1期30-34,共5页
I. IntroductionAs Douglas North once said, "Institutions are the rules of the game in a society. The beginning of wisdom is to understand how the game is played." In the same way, it is vital to understand t... I. IntroductionAs Douglas North once said, "Institutions are the rules of the game in a society. The beginning of wisdom is to understand how the game is played." In the same way, it is vital to understand the international experience and rules of a financial system when a country tries to advance financial reform. International experience shows that the development 展开更多
关键词 of on IT for in China’s Financial Reform in the Context of Financial Stability and efficiency been IS
原文传递
Homogeneous permeation and oriented crystallization in nanostructured mesopores for efficient and stable printable mesoscopic perovskite solar cells
11
作者 Guodong Zhang Yanjie Cheng +17 位作者 Tingting Niu Ziwei Zheng Zongwei Li Junwei Xiang Qiaojiao Gao Minghao Xia Lijuan Guo Yiming Liu Mengru Zhang Yiran Tao Xueqin Ran Mingjie Li Guichuan Xing Yingdong Xia Lingfeng Chao Anyi Mei Hongwei Han Yonghua Chen 《Science China Chemistry》 SCIE EI CAS CSCD 2024年第11期3688-3696,共9页
The low-cost and scalable printable mesoporous perovskite solar cells(p-MPSCs) face significant challenges in regulating perovskite crystal growth due to their nanoscale mesoporous scaffold structure, which limits the... The low-cost and scalable printable mesoporous perovskite solar cells(p-MPSCs) face significant challenges in regulating perovskite crystal growth due to their nanoscale mesoporous scaffold structure, which limits the improvement of device power conversion efficiency(PCE). In particular, the most commonly used solvents, N,N-dimethylformamide(DMF) and dimethyl sulfoxide(DMSO), have a single chemical interaction with the precursor components and high volatility, which is insufficient to self-regulate the perovskite crystallization process, leading to explosive nucleation and limited growth within mesoporous scaffolds. Here, we report a mixed solvent system composed of methylamine formaldehyde(MAFa)-based ionic liquid and acetonitrile(ACN) with the strong C=O–Pb coordination and N–H···I hydrogen bonding with perovskite components. We found that the mixed solvent system is beneficial for the precursor solution to homogeneously penetrate into the mesoporous scaffold,and the strong C=O–Pb coordination and N–H···I hydrogen bonding interaction can promote the oriented growth of perovskite crystals. This synergistic effect increased the PCE of the p-MPSCs from 17.50% to 19.21%, which is one of the highest records for p-MPSC in recent years. Additionally, the devices exhibit positive environmental stability, retaining over 90% of the original PCE after 1,200 h of aging under AM 1.5 illumination conditions at 55 ℃ and 55% humidity. 展开更多
关键词 printable mesoscopic perovskite solar cells ionic liquid crytallization control hight efficiency and stability
原文传递
Reducing surficial and interfacial defects by thiocyanate ionic liquid additive and ammonium formate passivator for efficient and stable perovskite solar cells 被引量:3
12
作者 Mengfei Zhu Yuren Xia +10 位作者 Lina Qin Kaiqiang Zhang Junchuan Liang Cheng Zhao Daocheng Hong Minghang Jiang Xinmei Song Jie Wei Pengbo Zhang Yuxi Tian Zhong Jin 《Nano Research》 SCIE EI CSCD 2023年第5期6849-6858,共10页
Organic–inorganic metal halide perovskites have attained extensive attention owing to their outstanding photovoltaic performances,but the existence of numerous defects in crystalline perovskites is still a serious co... Organic–inorganic metal halide perovskites have attained extensive attention owing to their outstanding photovoltaic performances,but the existence of numerous defects in crystalline perovskites is still a serious constraint for the further development of perovskite solar cells(PSCs).In particular,the rapid crystallization guided by anti-solvents leads to plenty of surficial and interfacial defects in perovskite films.Herein,we report the adoption of a pseudo-halide anion based ionic liquid additive,1-butyl-3-methylimidazolium thiocyanate(BMIMSCN)for growing ternary cation(CsFAMA,where FA=formamidinium and MA=methylammonium)perovskites with large-scale crystal grains and strong preferential orientation via the enhanced Ostwald ripening.Meanwhile,a novel halide-free passivator,benzylammonium formate(BAFa),was employed as a buffering layer on the perovskite films to suppress surface-dominated charge recombination.As a result,the cooperative effects of BMIMSCN additive and BAFa passivator lead to significant enhancements on fluorescence lifetime(from 79.41 to 201.01 ns),open-circuit voltage(from 1.13 to 1.19 V),photoelectric conversion efficiency(from 18.90%to 22.33%).Moreover,the BMIMSCN/BAFa-CsFAMA PSCs demonstrated greatly improved stability against moisture and heat.This work suggests a promising strategy to improve the quality of perovskite materials via reducing the surficial and interfacial defects by the synergistic effects of lattice doping and interface engineering. 展开更多
关键词 organic–inorganic perovskite solar cells pseudo-halide ion liquid additive non-halide ammonium formate passivator crystalline and interface engineering efficiency and stability improvements
原文传递
Interfacial engineering for efficient and stable two-terminal perovskite-based tandem solar cells
13
作者 Ying Li Di-Sheng Yao +2 位作者 Fei Long Guo-Zhen Zhang Feng Yu 《Rare Metals》 SCIE EI CAS 2024年第11期5573-5624,共52页
Two-terminal(2T)tandem solar cells(TSCs)are optically and electrically connected by two subcells with complementary bandgaps,which are designed to overcome the Shockley-Queisser(S-Q)limit of singlejunction solar cells... Two-terminal(2T)tandem solar cells(TSCs)are optically and electrically connected by two subcells with complementary bandgaps,which are designed to overcome the Shockley-Queisser(S-Q)limit of singlejunction solar cells.Organic-inorganic hybrid perovskites are ideal light-absorbing materials for 2T TSCs due to their tunable bandgaps,low-temperature solution-based processing,and excellent light absorption coefficient.Thus,2T perovskite-based TSCs(PTSCs)have aroused widespread interest among the photovoltaic community.At present,the key to obtaining efficient and stable 2T PTSCs is establishing efficient interfaces and layers with good photoelectric properties and high compatibility of subcells.In particular,interfacial engineering based on effective recombination layers(RCLs)and buffers has a prominent effect on achieving enhanced power conversion efficiency(PCE)of 2T PTSCs with improved operational stability.In this article,the current frontier issues of 2T PTSCs including different device structures and properties are reviewed in detail to analyze their merits,demerits and solutions to overcome bottlenecks.Subsequently,the component engineering,interface engineering and theoretical PCE analysis for designing 2T PTSCs proposed by material simulations are discussed.Furthermore,the scalability of interfacial passivation from single-junction perovskite solar cells to 2T PTSCs is evaluated,and the function mechanisms of RCLs and buffers are also summarized and analyzed carefully.Finally,the challenges faced by 2T PTSCs are pointed out,and their developme nt directions are suggested.This article aims to provide viable guidance for realizing practical manufacturing technologies for the commercialization of 2T PTSCs. 展开更多
关键词 Two-terminal tandem solar cells Organic-inorganic perovskites Passivation interfaces Recombination layers and buffers efficiency and stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部