A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault d...A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault diagnosis under uncertainty. According to the theory , an inference model , named as FSL , is thus designed to be devoted to the building of a fault diagnosis expert system for rotating machinery (ROSLES) . The system is put into operation on a vibration simula- tor stand for 300 MW turbine generator set ( 1 : 1 0) and satisfactory results are gained.展开更多
The three-dimensional structure of a biomolecule rather than its one-dimensionM sequence determines its biological function. At present, the most accurate structures are derived from experimental data measured mainly ...The three-dimensional structure of a biomolecule rather than its one-dimensionM sequence determines its biological function. At present, the most accurate structures are derived from experimental data measured mainly by two techniques: X-ray crystallog- raphy and nuclear magnetic resonance (NMR) spec- troscopy. Because neither X-ray crystallography nor NMR spectroscopy could directly measure the positions of atoms in a biomolecule, algorithms must be designed to compute atom coordinates from the data. One salient feature of most NMR structure computation algorithms is their reliance on stochastic search to find the lowest energy conformations that satisfy the experimentally- derived geometric restraints. However, neither the cor- rectness of the stochastic search has been established nor the errors in the output structures could be quantified. Though there exist exact algorithms to compute struc- tures from angular restraints, similar algorithms that use distance restraints remain to be developed. An important application of structures is rational drug design where protein-ligand docking plays a crit- ical role. In fact, various docking programs that place a compound into the binding site of a target protein have been used routinely by medicinal chemists for both lead identification and optimization. Unfortunately, de- spite ongoing methodological advances and some success stories, the performance of current docking algorithms is still data-dependent. These algorithms formulate the docking problem as a match of two sets of feature points. Both the selection of feature points and the search for the best poses with the minimum scores are accomplished through some stochastic search methods. Both the un- certainty in the scoring function and the limited sam- pling space attained by the stochastic search contribute to their failures. Recently, we have developed two novel docking algorithms: a data-driven docking algorithm and a general docking algorithm that does not rely on experimental data. Our algorithms search the pose space exhaustively with the pose space itself being limited to a set of hierarchical manifolds that represent, respectively, surfaces, curves and points with unique geometric and energetic properties. These algorithms promise to be es- pecially valuable for the docking of fragments and small compounds as well as for virtual screening.展开更多
文摘A new theory- the fuzzy probability logic theory is presented , This theory incorpo- rates the genterally-used fuzzy logic and the traditionally-used probability logic theory in attempt to emulate the rational fault diagnosis under uncertainty. According to the theory , an inference model , named as FSL , is thus designed to be devoted to the building of a fault diagnosis expert system for rotating machinery (ROSLES) . The system is put into operation on a vibration simula- tor stand for 300 MW turbine generator set ( 1 : 1 0) and satisfactory results are gained.
文摘The three-dimensional structure of a biomolecule rather than its one-dimensionM sequence determines its biological function. At present, the most accurate structures are derived from experimental data measured mainly by two techniques: X-ray crystallog- raphy and nuclear magnetic resonance (NMR) spec- troscopy. Because neither X-ray crystallography nor NMR spectroscopy could directly measure the positions of atoms in a biomolecule, algorithms must be designed to compute atom coordinates from the data. One salient feature of most NMR structure computation algorithms is their reliance on stochastic search to find the lowest energy conformations that satisfy the experimentally- derived geometric restraints. However, neither the cor- rectness of the stochastic search has been established nor the errors in the output structures could be quantified. Though there exist exact algorithms to compute struc- tures from angular restraints, similar algorithms that use distance restraints remain to be developed. An important application of structures is rational drug design where protein-ligand docking plays a crit- ical role. In fact, various docking programs that place a compound into the binding site of a target protein have been used routinely by medicinal chemists for both lead identification and optimization. Unfortunately, de- spite ongoing methodological advances and some success stories, the performance of current docking algorithms is still data-dependent. These algorithms formulate the docking problem as a match of two sets of feature points. Both the selection of feature points and the search for the best poses with the minimum scores are accomplished through some stochastic search methods. Both the un- certainty in the scoring function and the limited sam- pling space attained by the stochastic search contribute to their failures. Recently, we have developed two novel docking algorithms: a data-driven docking algorithm and a general docking algorithm that does not rely on experimental data. Our algorithms search the pose space exhaustively with the pose space itself being limited to a set of hierarchical manifolds that represent, respectively, surfaces, curves and points with unique geometric and energetic properties. These algorithms promise to be es- pecially valuable for the docking of fragments and small compounds as well as for virtual screening.