The stable hydrogen and oxygen isotopes widely exist in various kinds of natural water.Plants have to cope with various water sources:rainwater,soil water,groundwater,sea water,and mixtures.These are usually character...The stable hydrogen and oxygen isotopes widely exist in various kinds of natural water.Plants have to cope with various water sources:rainwater,soil water,groundwater,sea water,and mixtures.These are usually characterized by different isotopic signatures (18O/16O and D/H ratios).Because there are relative abundance variations in water,and plant roots do not discriminate against specific water isotopes during water uptake,hydrogen and oxygen stable isotope ratios of water within plants provide new information on water sources,interactions between plant species and water use patterns under natural conditions.At present,the measurement of δD,δ18O composition of various potential water sources and stem water has become significant means to identify plant water sources.Based on previous studies,this review highlights recent advances such as theory basis,methodology,as well as different spatial and temporal scales,and existed questions and prospects.Stable isotope techniques for estimating plant water sources have provided valuable tools for conducting basic and applied research.Future studies emphasize the modification of preparing methods,isotope technique combined with other measurements,and aerial organs of plant water source should be en-couraged.展开更多
Globally,groundwater contamination by nitrate is one of the most widespread environmental problems,particularly in arid and semiarid areas,which are characterized by low amounts of rainfall and groundwater recharge.Th...Globally,groundwater contamination by nitrate is one of the most widespread environmental problems,particularly in arid and semiarid areas,which are characterized by low amounts of rainfall and groundwater recharge.The stable isotope composition of groundwater(δ2H-H2O andδ18O-H2O)and dissolved nitrate(δ15N-NO3–andδ18O-NO3–)and factor analysis(FA)were applied to explore groundwater provenance,pollution,and chemistry evolution in the northwestern part of the Amman-Al Zarqa Basin,Jordan.In this study,we collected 23 samples from the Lower Ajloun aquifer in 2021,including 1 sample from a groundwater well and 22 samples from springs.These samples were tested for electrical conductivity,total dissolved solids,pH,temperature,dissolved oxygen,the concentration of major ions(Ca2+,Mg2+,Na+,K+,HCO3–,Cl–,SO42–,and NO3–),and the stable isotope composition of groundwater and dissolved nitrate.The results revealed that groundwater in the study area is mainly Ca–Mg–HCO3 type and can be classified as fresh water,hard water,and very hard water.The range and average concentration of NO3–were 3.5–230.8 and 50.9 mg/L,respectively.Approximately 33%of the sampling points showed NO3–levels above the maximum allowable concentration of 50.0 mg/L set by the World Health Organization(WHO)guidelines for drinking water quality.The values ofδ18O-H2O andδ2H-H2O showed that groundwater in the study area is part of the current water cycle,originating in the Mediterranean Sea,with significant evaporation,orographic,and amount effects.The values of the stable isotope composition of NO3–corresponded toδ15N-NO3–andδ18O-NO3–values produced by the nitrification process of manure or septic waste and soil NH4+.The FA performed on the hydrochemical parameters and isotope data resulted in three main factors,with Factor 1,Factor 2,and Factor 3,accounting for 50%,21%,and 11%of the total variance,respectively.Factor 1 was considered human-induced factor,named"pollution factor",whereas Factor 2,named"conservative fingerprint factor",and Factor 3,named"hardness factor",were considered natural factors.This study will help local researchers manage groundwater sustainably in the study area and other similar arid and semiarid areas in the world.展开更多
Significantly high abundant methyl-Methyl Trimethyl Tridecyl Chromans (MTTCs) have been detected in aromatic hydrocarbon fractions in crude oils from the Jizhong Depression and Jianghan Basin. The distribution of th...Significantly high abundant methyl-Methyl Trimethyl Tridecyl Chromans (MTTCs) have been detected in aromatic hydrocarbon fractions in crude oils from the Jizhong Depression and Jianghan Basin. The distribution of these compounds is dominated by methyl-MTTC and dimethyl- MTTC series, which indicate diagenetic products of a hypersaline depositional environment in the early stage and show a low degree of methylation. The occurrence of significantly high abundant methyl-MTTC depends mainly on good preservation conditions with a strongly reductive, hypersaline and water-columned depositional environment and subsequent non-intensive diagenetic transformations. The stable carbon isotopic compositions of the methyl-MTTCs and dimethyl-MTTCs in two samples are far different from the stable carbon isotopic composition of C30 hopane of apparent bacteria biogenesis (up to 4.11‰ and 5.75‰, respectively). This obviously demonstrates that the methyl-MTTC and dimethyl-MTTCs cannot be of bacteria origin, which is different from the previous point of view about non-photosynthetic bacteria products or possible bacteria-reworked products. On the contrary, the stable carbon isotopic compositions of methyl-MTTC and dimethyl-MTTCs in the two samples were similar to that of the same carbon-numbered n-alkanes (nC27-nC28-nC29), which indicates that they share the same source origin. Especially in the crude oil from the Zhao61 well, stable carbon isotopic compositions are also similar to that of the same carbon-numbered steranes with ααα- 20R isomer (mostly less than 0.4‰). In consideration of the results of previous studies on saline lake ecological sedimentation, the authors hold that the methyl-MTTC and dimethyl-MTTCs in the saline lake sediments should be of algal biogenesis origin.展开更多
Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inle...Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ^13C) values of the carbonate sediment (-1‰ to -2‰) have no relation to the oxygen isotope composition of the carbonate (δ^18O) values (-7‰ to -8‰), with both isotopes showing a low variability. The carbonate content is low (〈20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ^13C values between approximately +0.5‰ and +3‰, and δ^18O values between -1‰ and -5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg-calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg-calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.展开更多
Soils of the Chinese Loess Plateau(CLP)contain substantial amounts of soil inorganic carbon(SIC),as well as recent and ancient soil organic carbon(SOC).With the advent of the Anthropocene,human perturbation,including ...Soils of the Chinese Loess Plateau(CLP)contain substantial amounts of soil inorganic carbon(SIC),as well as recent and ancient soil organic carbon(SOC).With the advent of the Anthropocene,human perturbation,including excavation,has increased soil CO_(2) emission from the huge loess carbon pool.This study aims to determine the potential of loess CO_(2) emission induced by excavation.Soil CO_(2) were continuously monitored for seven years on a newly-excavated profile in the central CLP and the stable C isotope compositions of soil CO_(2) and SOC were used to identify their sources.The results showed that the soil CO_(2) concentrations ranged from 830μL·L^(-1) to 11190μL·L^(-1) with an annually reducing trend after excavation,indicating that the human excavation can induce CO_(2) production in loess profile.Theδ^(13) C of CO_(2) ranged from–21.27‰to–19.22‰(mean:–20.11‰),with positive deviation from top to bottom.The range of δ^(13)CSOC was–24.0‰to–21.1‰with an average of–23.1‰.Theδ^(13) C-CO_(2) in this study has a positive relationship with the reversed CO_(2) concentration,and it is calculated that 80.22%of the soil CO_(2) in this profile is from the microbial decomposition of SOC and 19.78%from the degasification during carbonate precipitation.We conclude that the human excavation can significantly enhance the decomposition of the ancient OC in loess during the first two years after perturbation,producing and releasing soil CO_(2) to atmosphere.展开更多
The present study introduces the carbonatite in the northern part of the Korean Peninsula for the first time.Recent exploration and development of the phosphorus-bearing carbonate rocks in the area have accumulated ne...The present study introduces the carbonatite in the northern part of the Korean Peninsula for the first time.Recent exploration and development of the phosphorus-bearing carbonate rocks in the area have accumulated new geological data which gave us an opportunity to study origin of the carbonate rocks.We conducted geological survey,geochemical analyses of trace elements and rare earth elements,and carbon and oxygen isotope analyses for the carbonatites from Ssangryong,Pungnyon,Yongyu and Puhung districts of the northern part of the Korean Peninsula.This research confirms that the phosphorus-bearing carbonate rocks are carbonatite originating from the mantle.The studied carbonatites are distributed at the junctions of ring and linear structures or around their margins and contain a greater amount of REEs,Y,and Sr than carbonate rocks.The carbonatites in Yongyu and Puhung area show evidence that they were formed from mantle plume generated at the lower mantle and display similar fractionation characteristics to carbonatites in Barrado Itapirapua in Brazil and Kalkfeld and Ondurakorume in Namibia.REE patterns of the carbonatites are typical of carbonatites and the carbon and oxygen isotope analyses demonstrate that the carbonatites were originated from mantle.The carbonatites from the northern part of the Korean Peninsula have a great potential for sources of REE,Y,PGE(platinum group elements),copper,and gold.展开更多
Riparian vegetation in the lower reaches of Heihe River serves important ecological functions. However, the riparian ecosystems have been constantly deteriorating in the past 30 years simply due to water interception ...Riparian vegetation in the lower reaches of Heihe River serves important ecological functions. However, the riparian ecosystems have been constantly deteriorating in the past 30 years simply due to water interception for oasis agricultural irrigation in the middle reaches of the river. This study pays a particular attention to Populus eu- phratica Oily. forest because it is a dominant component of the riparian ecosystem in the lower reaches of Heihe River where the depth of groundwater table is the controlling factor in sustaining riparian ecosystems. To reveal leaf-related physiological responses of Populus euphratica Oliv. forest to groundwater table variations, we analyzed the relationships between the depth of groundwater table (DG) and three leaf-related parameters, i.e. leaf stomatal density (SD), specific leaf area (SLA), and stable carbon isotopic composition (6~SC). Our results show that the relationship between DG and leaf SD is a bi-mode one shaped by both salt stress and water stress. That is, salt stress appeared in shallow groundwater conditions and water stress happened in deep groundwater conditions, and the thin layer around 2.7 m of DG is a stress-free layer. Leaf SD fluctuated according to the DG variation, first de- creased with increasing DG, then increased at depths ranging 2.7-3.7 m, and after a relatively stable plateau of SD at depths ranging 3.7-5.2 m, decreased again with increasing DG. Our results also show that SLA decreased ex- ponentially with increasing DG and foliar 6130 values are also strongly dependent on DG, further demonstrating that these two parameters are sensitive indicators of water stress. The exponential curve suggests that SLA is more sensitive to DG when groundwater table is shallow and 3 m seems to be a threshold beyond which SLA becomes less sensitive to DG. Foliar 613C becomes more sensitive when the groundwater table is deep and 7 m seems to be a threshold below which the 6130 signature becomes more sensitive to DG. These findings should be helpful in monitoring the growth and development of Populus euphratica Oliv. forests and also in providing protection measures (i.e. DG related) for Heihe River riparian forests.展开更多
Geochemical studies of crude oil and source rock play an important role in future exploration in Zhanhua Depression.In this study,thirty-one oil samples collected from Shahejie Formation in Zhanhua Depression,Bohai Ba...Geochemical studies of crude oil and source rock play an important role in future exploration in Zhanhua Depression.In this study,thirty-one oil samples collected from Shahejie Formation in Zhanhua Depression,Bohai Bay Basin,NE China have been geochemically analyzed and their organic geochemical characteristics have been applied to differentiate groups of oils.These oil samples can be classified into two families based on multiple biomarker proxies and stable carbon isotopic values.FamilyⅠis characterized by a low ratio of pristane over phytane(Pr/Ph<0.7),a relatively high ratio of phytane over n-C18(Ph/n-C18),varying ratios of gammacerane over C30 hopane(Ga/C30H)and C22/C21 tricyclic terpane,and a low ratio of C19/C23 tricyclic terpane.FamilyⅡis marked by a relatively high Pr/Ph ratio(0.7-1.6),relative low ratios of Ph/n-C18 and C22/C21 tricyclic terpane,and avarying ratio of C19/C23 tricyclic terpane.Both familiesⅠandⅡwithin these crude oils can be subdivided into two families based on different values of stable carbon isotopic composition of individual n-alkanes.Moreover,the potential source rocks of oil samples in FamilyⅠand FamilyⅡwere likely derived from the upper Es4 member and Es3 member,respectively,based on the correlation of organic geochemical characteristics of the oils and source rocks.The results of oil-source rock correlation provide insight into the process from oil generation to migration and to final accumulation,providing a better understanding of factors controlling oil-gas distribution for prediction of sweet spots.展开更多
The food sources of aquacultured Apostichopus japonicus and the trophic levels of organisms in a sea cucumber(A. japonicus) and prawn(Penaeus japonica) polyculture system in a saltwater pond in Zhuanghe, Liaoning ...The food sources of aquacultured Apostichopus japonicus and the trophic levels of organisms in a sea cucumber(A. japonicus) and prawn(Penaeus japonica) polyculture system in a saltwater pond in Zhuanghe, Liaoning Province were examined using carbon and nitrogen stable isotopes. Across organisms, δ13C ranged from(–25.47±0.20)‰ to(–16.48±0.17)‰(mean±SD), and δ15N ranged from(4.23±0.49)‰ to(12.44±0.09)‰. The δ13C and δ15N contents of A. japonicus, P. japonica and Fenneropenaeus chinensis were comparatively higher than those of other organisms. Values of δ13C and δ15N revealed that P. japonica, Hemigrapsus sanguineus and Neomysis japonica comprised the largest component of the diet of A. japonicus. The mean trophic level of the organisms in this saltwater pond polyculture system was(2.75±0.08). P. japonica, A. japonicus, F. chinensis,Synechogobius hasta and Neomysis japonica were in the 3rd trophic level(2–3); jellyfish, H. sanguineus and zooplankton were in the 2nd trophic level(1–2); and Enteromorpha prolifera, benthic microalgae, periphyton and suspended matter primarily consisting of phytoplankton, bacteria and humus were in the primary trophic level(0–1).展开更多
Stable oxygen and hydrogen isotopic compositions (δ18O and δD) of soil water and shallow groundwater of a riparian forest, an artificial shrub forest, and Gobi of the lower reaches of the Heihe River Basin are use...Stable oxygen and hydrogen isotopic compositions (δ18O and δD) of soil water and shallow groundwater of a riparian forest, an artificial shrub forest, and Gobi of the lower reaches of the Heihe River Basin are used to study the recharge water sources of those ecosystems. IsoSource software is used to determine the δ180 values for root water of Populous euphratica and Tamarix ramosissima in the riparian forest ecosystem, Haloxylon ammodendron in the artificial shrub forest, and Reaumuria soongorica in the Gobi, as well as for local soil water and groundwater, and precipitation in the upper reaches of the Heihe River Basin. Our results showed that soil water and shallow groundwater of the riparian forest and the artificial shrub forest were recharged by river water which originated from precipitation in the upper reaches, and strong evaporation occurred in the artificial shrub forest. Soil water of the Gobi was not affected by Heihe River water due to this area being far away from the river channel. The main water sources of Populous euphratica were from 40-60-cm soil water and groundwater, and of Tamarix ramosissima were from 40-80-cm soil water in the riparian forest ecosystem. In the artificial forest, Haloxylon ammodendron used 200-cm saturated-layer soil water and shallow groundwater. The Reaumuria soongorica mainly used soil water from the 175-200-cm depth in the Gobi. Therefore, soil water and groundwater are the main water sources which maintain survival and growth of the plants in the extremely arid regions of the lower reaches of the Heihe River Basin.展开更多
We examined stable isotope signals of precipitation, soil water, and xylem water and ran the multi-source linear mixing model (IsoSource) to determine water uptake depths and estimate proportional contribution of po...We examined stable isotope signals of precipitation, soil water, and xylem water and ran the multi-source linear mixing model (IsoSource) to determine water uptake depths and estimate proportional contribution of possible water pools to the water use of Mongolian pine (Pinus sylvestris var. mongolica) plantation in southeast Horqin Sandy Land. We also examined variations of the water use by Mongolian pine trees before and after a heavy precipitation event. The closeness of isotopic composition between xylem water and potential water pools presented that most of water uptake by the trees occurred in the depth of below 20 cm soil (up to 80 cm in this study). Estimate from the IsoSource model agrees well with observation, and the model yielded that over 60% of the water was derived from 20–80 cm soil layer under relatively higher soil moisture conditions, contribution from much deeper soil depth may increase when the soil in this layer became dry. The contribution from the groundwater was very low since water table was much deeper than rooting depth of the trees. Isotopic signals of xylem water of Mongolian pine trees before and after a heavy precipitation of 14.4 mm on July 13 in 2009 exhibited that the trees could sense and use recent rain-charged soil water at the upper 20 cm soil layer 36 hours after the rain, and this contribution decreased rapidly in the following 24 hours. The ability of accessing different water pools of Mongolian pine trees under various soil moisture conditions is likely a good indicator of their adaptability to dry habitats in sandy lands.展开更多
Multi-proxies of lacustrine sediments, such as total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen (TN), total sulfur (TS), hydrogen index (HI), oxygen index (OI) and stable car...Multi-proxies of lacustrine sediments, such as total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen (TN), total sulfur (TS), hydrogen index (HI), oxygen index (OI) and stable carbon isotopic composition of organic matter (δ^(13)C_(org)), were analyzed using a 7.3 m core from Zige Tangco. The source of the organic matter in the sediment was mainly from autochthonous phyto-plankton, therefore the significances of proxies can be interpreted as that high TOC, TOC/TS, HI and δ^(13)C_(org) values, low TC, TIC values corresponded to warm and wet climatic condition, and vice versa. The process of climatic development in the Zige Tangco region was hence recovered. During the early and Mid-Holocene, the climate was warm and wet and intensive cold events occurred during the periods of 8600 to 8400 cal a BP and 7400 to 7000 cal a BP. In the second half of Holocene, the climate became cold and dry gradually. The palaeoclimatic process during Holocene in Zige Tangco region matched well with that in Co Ngoin region which is ca 40 km to the south-east. Therefore this palaeoclimatic process represents the Holocene climatic feature in the Central Tibetan Plateau which has the same pattern in the Northern Tibetan Plateau, but the time and duration of some climatic events might be different. We can conclude that in Holocene solar insolation controlled the climatic pattern on the central Tibetan Plateau.展开更多
基金supported by the West Action Program of the Chinese Academy of Sciences (KZCX2-XB2-04-03)the West Light Foundation of West Doctor of the Chinese Academy of Sciences+1 种基金the China Postdoctoral Science Foundation (Grant No. 200801244 and 20070420135)the Talented Foundation for Young Scientists of Cold and Arid Regions Environmental and Engineering Research Institute (No. 510984911)
文摘The stable hydrogen and oxygen isotopes widely exist in various kinds of natural water.Plants have to cope with various water sources:rainwater,soil water,groundwater,sea water,and mixtures.These are usually characterized by different isotopic signatures (18O/16O and D/H ratios).Because there are relative abundance variations in water,and plant roots do not discriminate against specific water isotopes during water uptake,hydrogen and oxygen stable isotope ratios of water within plants provide new information on water sources,interactions between plant species and water use patterns under natural conditions.At present,the measurement of δD,δ18O composition of various potential water sources and stem water has become significant means to identify plant water sources.Based on previous studies,this review highlights recent advances such as theory basis,methodology,as well as different spatial and temporal scales,and existed questions and prospects.Stable isotope techniques for estimating plant water sources have provided valuable tools for conducting basic and applied research.Future studies emphasize the modification of preparing methods,isotope technique combined with other measurements,and aerial organs of plant water source should be en-couraged.
基金funded by the Deanship of Scientific Research,Jordan University of Science and Technology(20210159).
文摘Globally,groundwater contamination by nitrate is one of the most widespread environmental problems,particularly in arid and semiarid areas,which are characterized by low amounts of rainfall and groundwater recharge.The stable isotope composition of groundwater(δ2H-H2O andδ18O-H2O)and dissolved nitrate(δ15N-NO3–andδ18O-NO3–)and factor analysis(FA)were applied to explore groundwater provenance,pollution,and chemistry evolution in the northwestern part of the Amman-Al Zarqa Basin,Jordan.In this study,we collected 23 samples from the Lower Ajloun aquifer in 2021,including 1 sample from a groundwater well and 22 samples from springs.These samples were tested for electrical conductivity,total dissolved solids,pH,temperature,dissolved oxygen,the concentration of major ions(Ca2+,Mg2+,Na+,K+,HCO3–,Cl–,SO42–,and NO3–),and the stable isotope composition of groundwater and dissolved nitrate.The results revealed that groundwater in the study area is mainly Ca–Mg–HCO3 type and can be classified as fresh water,hard water,and very hard water.The range and average concentration of NO3–were 3.5–230.8 and 50.9 mg/L,respectively.Approximately 33%of the sampling points showed NO3–levels above the maximum allowable concentration of 50.0 mg/L set by the World Health Organization(WHO)guidelines for drinking water quality.The values ofδ18O-H2O andδ2H-H2O showed that groundwater in the study area is part of the current water cycle,originating in the Mediterranean Sea,with significant evaporation,orographic,and amount effects.The values of the stable isotope composition of NO3–corresponded toδ15N-NO3–andδ18O-NO3–values produced by the nitrification process of manure or septic waste and soil NH4+.The FA performed on the hydrochemical parameters and isotope data resulted in three main factors,with Factor 1,Factor 2,and Factor 3,accounting for 50%,21%,and 11%of the total variance,respectively.Factor 1 was considered human-induced factor,named"pollution factor",whereas Factor 2,named"conservative fingerprint factor",and Factor 3,named"hardness factor",were considered natural factors.This study will help local researchers manage groundwater sustainably in the study area and other similar arid and semiarid areas in the world.
文摘Significantly high abundant methyl-Methyl Trimethyl Tridecyl Chromans (MTTCs) have been detected in aromatic hydrocarbon fractions in crude oils from the Jizhong Depression and Jianghan Basin. The distribution of these compounds is dominated by methyl-MTTC and dimethyl- MTTC series, which indicate diagenetic products of a hypersaline depositional environment in the early stage and show a low degree of methylation. The occurrence of significantly high abundant methyl-MTTC depends mainly on good preservation conditions with a strongly reductive, hypersaline and water-columned depositional environment and subsequent non-intensive diagenetic transformations. The stable carbon isotopic compositions of the methyl-MTTCs and dimethyl-MTTCs in two samples are far different from the stable carbon isotopic composition of C30 hopane of apparent bacteria biogenesis (up to 4.11‰ and 5.75‰, respectively). This obviously demonstrates that the methyl-MTTC and dimethyl-MTTCs cannot be of bacteria origin, which is different from the previous point of view about non-photosynthetic bacteria products or possible bacteria-reworked products. On the contrary, the stable carbon isotopic compositions of methyl-MTTC and dimethyl-MTTCs in the two samples were similar to that of the same carbon-numbered n-alkanes (nC27-nC28-nC29), which indicates that they share the same source origin. Especially in the crude oil from the Zhao61 well, stable carbon isotopic compositions are also similar to that of the same carbon-numbered steranes with ααα- 20R isomer (mostly less than 0.4‰). In consideration of the results of previous studies on saline lake ecological sedimentation, the authors hold that the methyl-MTTC and dimethyl-MTTCs in the saline lake sediments should be of algal biogenesis origin.
基金funded by NSFC grants(no.:40773064,40331012,and 40041004).
文摘Bosten Lake is a mid-latitude lake with water mainly supplied by melting ice and snow in the Tianshan Mountains. The depositional environment of the lake is spatially not uniform due to the proximity of the major inlet and the single outlet in the western part of the lake. The analytical results show that the carbon and oxygen isotopic composition of recent lake sediments is related to this specific lacustrine depositional environment and to the resulting carbonate mineralogy. In the southwestern lake region between the Kaidu River inlet and the Kongqi River outlet, carbon isotope composition (δ^13C) values of the carbonate sediment (-1‰ to -2‰) have no relation to the oxygen isotope composition of the carbonate (δ^18O) values (-7‰ to -8‰), with both isotopes showing a low variability. The carbonate content is low (〈20%). Carbonate minerals analyzed by X-ray diffraction are mainly composed of calcite, while aragonite was not recorded. The salinity of the lake water is low in the estuary region as a result of the Kaidu River inflow. In comparison, the carbon and oxygen isotope values are higher in the middle and eastern parts of the lake, with δ^13C values between approximately +0.5‰ and +3‰, and δ^18O values between -1‰ and -5‰. There is a moderate correlation between the stable oxygen and carbon isotopes, with a coefficient of correlation r of approximately 0.63. This implies that the lake water has a relatively short residence time. Carbonate minerals constitute calcite and aragonite in the middle and eastern region of the lake. Aragonite and Mg-calcite are formed at higher lake water salinity and temperatures, and larger evaporation effects. More saline lake water in the middle and eastern region of the lake and the enhanced isotopic equilibrium between water and atmospheric CO2 cause the correlating carbon and oxygen isotope values determined for aragonite and Mg-calcite. Evaporation and biological processes are the main reasons for the salinity and carbonate mineralogy influence of the surface-sediment carbonate in Bosten Lake. The lake water residence time and the CO2 exchange between the atmosphere and the water body control the carbon and oxygen isotope composition of the carbonate sediment. In addition, organic matter pollution and decomposition result in the abnormally low carbon isotope values of the lake surface-sediment carbonate.
基金funded by National Natural Science Foundation of China(Grant No.41877398)the Basic Science Research Fund from the Institute of Chinese Academy of Geological Sciences(Grant No.SK201911)the Belt and Road Fund on Water and Sustainability(U2019NKMS01)。
文摘Soils of the Chinese Loess Plateau(CLP)contain substantial amounts of soil inorganic carbon(SIC),as well as recent and ancient soil organic carbon(SOC).With the advent of the Anthropocene,human perturbation,including excavation,has increased soil CO_(2) emission from the huge loess carbon pool.This study aims to determine the potential of loess CO_(2) emission induced by excavation.Soil CO_(2) were continuously monitored for seven years on a newly-excavated profile in the central CLP and the stable C isotope compositions of soil CO_(2) and SOC were used to identify their sources.The results showed that the soil CO_(2) concentrations ranged from 830μL·L^(-1) to 11190μL·L^(-1) with an annually reducing trend after excavation,indicating that the human excavation can induce CO_(2) production in loess profile.Theδ^(13) C of CO_(2) ranged from–21.27‰to–19.22‰(mean:–20.11‰),with positive deviation from top to bottom.The range of δ^(13)CSOC was–24.0‰to–21.1‰with an average of–23.1‰.Theδ^(13) C-CO_(2) in this study has a positive relationship with the reversed CO_(2) concentration,and it is calculated that 80.22%of the soil CO_(2) in this profile is from the microbial decomposition of SOC and 19.78%from the degasification during carbonate precipitation.We conclude that the human excavation can significantly enhance the decomposition of the ancient OC in loess during the first two years after perturbation,producing and releasing soil CO_(2) to atmosphere.
文摘The present study introduces the carbonatite in the northern part of the Korean Peninsula for the first time.Recent exploration and development of the phosphorus-bearing carbonate rocks in the area have accumulated new geological data which gave us an opportunity to study origin of the carbonate rocks.We conducted geological survey,geochemical analyses of trace elements and rare earth elements,and carbon and oxygen isotope analyses for the carbonatites from Ssangryong,Pungnyon,Yongyu and Puhung districts of the northern part of the Korean Peninsula.This research confirms that the phosphorus-bearing carbonate rocks are carbonatite originating from the mantle.The studied carbonatites are distributed at the junctions of ring and linear structures or around their margins and contain a greater amount of REEs,Y,and Sr than carbonate rocks.The carbonatites in Yongyu and Puhung area show evidence that they were formed from mantle plume generated at the lower mantle and display similar fractionation characteristics to carbonatites in Barrado Itapirapua in Brazil and Kalkfeld and Ondurakorume in Namibia.REE patterns of the carbonatites are typical of carbonatites and the carbon and oxygen isotope analyses demonstrate that the carbonatites were originated from mantle.The carbonatites from the northern part of the Korean Peninsula have a great potential for sources of REE,Y,PGE(platinum group elements),copper,and gold.
基金financially supported by the National Natural Science Foundation of China (91025015, 30770387)
文摘Riparian vegetation in the lower reaches of Heihe River serves important ecological functions. However, the riparian ecosystems have been constantly deteriorating in the past 30 years simply due to water interception for oasis agricultural irrigation in the middle reaches of the river. This study pays a particular attention to Populus eu- phratica Oily. forest because it is a dominant component of the riparian ecosystem in the lower reaches of Heihe River where the depth of groundwater table is the controlling factor in sustaining riparian ecosystems. To reveal leaf-related physiological responses of Populus euphratica Oliv. forest to groundwater table variations, we analyzed the relationships between the depth of groundwater table (DG) and three leaf-related parameters, i.e. leaf stomatal density (SD), specific leaf area (SLA), and stable carbon isotopic composition (6~SC). Our results show that the relationship between DG and leaf SD is a bi-mode one shaped by both salt stress and water stress. That is, salt stress appeared in shallow groundwater conditions and water stress happened in deep groundwater conditions, and the thin layer around 2.7 m of DG is a stress-free layer. Leaf SD fluctuated according to the DG variation, first de- creased with increasing DG, then increased at depths ranging 2.7-3.7 m, and after a relatively stable plateau of SD at depths ranging 3.7-5.2 m, decreased again with increasing DG. Our results also show that SLA decreased ex- ponentially with increasing DG and foliar 6130 values are also strongly dependent on DG, further demonstrating that these two parameters are sensitive indicators of water stress. The exponential curve suggests that SLA is more sensitive to DG when groundwater table is shallow and 3 m seems to be a threshold beyond which SLA becomes less sensitive to DG. Foliar 613C becomes more sensitive when the groundwater table is deep and 7 m seems to be a threshold below which the 6130 signature becomes more sensitive to DG. These findings should be helpful in monitoring the growth and development of Populus euphratica Oliv. forests and also in providing protection measures (i.e. DG related) for Heihe River riparian forests.
基金financially supported by the Chinese NSF Grants[41903064]to Hong Lu。
文摘Geochemical studies of crude oil and source rock play an important role in future exploration in Zhanhua Depression.In this study,thirty-one oil samples collected from Shahejie Formation in Zhanhua Depression,Bohai Bay Basin,NE China have been geochemically analyzed and their organic geochemical characteristics have been applied to differentiate groups of oils.These oil samples can be classified into two families based on multiple biomarker proxies and stable carbon isotopic values.FamilyⅠis characterized by a low ratio of pristane over phytane(Pr/Ph<0.7),a relatively high ratio of phytane over n-C18(Ph/n-C18),varying ratios of gammacerane over C30 hopane(Ga/C30H)and C22/C21 tricyclic terpane,and a low ratio of C19/C23 tricyclic terpane.FamilyⅡis marked by a relatively high Pr/Ph ratio(0.7-1.6),relative low ratios of Ph/n-C18 and C22/C21 tricyclic terpane,and avarying ratio of C19/C23 tricyclic terpane.Both familiesⅠandⅡwithin these crude oils can be subdivided into two families based on different values of stable carbon isotopic composition of individual n-alkanes.Moreover,the potential source rocks of oil samples in FamilyⅠand FamilyⅡwere likely derived from the upper Es4 member and Es3 member,respectively,based on the correlation of organic geochemical characteristics of the oils and source rocks.The results of oil-source rock correlation provide insight into the process from oil generation to migration and to final accumulation,providing a better understanding of factors controlling oil-gas distribution for prediction of sweet spots.
基金The National Marine Public Welfare Project of China under contract No.201305005
文摘The food sources of aquacultured Apostichopus japonicus and the trophic levels of organisms in a sea cucumber(A. japonicus) and prawn(Penaeus japonica) polyculture system in a saltwater pond in Zhuanghe, Liaoning Province were examined using carbon and nitrogen stable isotopes. Across organisms, δ13C ranged from(–25.47±0.20)‰ to(–16.48±0.17)‰(mean±SD), and δ15N ranged from(4.23±0.49)‰ to(12.44±0.09)‰. The δ13C and δ15N contents of A. japonicus, P. japonica and Fenneropenaeus chinensis were comparatively higher than those of other organisms. Values of δ13C and δ15N revealed that P. japonica, Hemigrapsus sanguineus and Neomysis japonica comprised the largest component of the diet of A. japonicus. The mean trophic level of the organisms in this saltwater pond polyculture system was(2.75±0.08). P. japonica, A. japonicus, F. chinensis,Synechogobius hasta and Neomysis japonica were in the 3rd trophic level(2–3); jellyfish, H. sanguineus and zooplankton were in the 2nd trophic level(1–2); and Enteromorpha prolifera, benthic microalgae, periphyton and suspended matter primarily consisting of phytoplankton, bacteria and humus were in the primary trophic level(0–1).
基金supported by the National Natural Science Foundation of China (Grant Nos. 91325102, 91025016 and 91125025)the National Science & Technology Support Project (No. 2011BAC07B05)
文摘Stable oxygen and hydrogen isotopic compositions (δ18O and δD) of soil water and shallow groundwater of a riparian forest, an artificial shrub forest, and Gobi of the lower reaches of the Heihe River Basin are used to study the recharge water sources of those ecosystems. IsoSource software is used to determine the δ180 values for root water of Populous euphratica and Tamarix ramosissima in the riparian forest ecosystem, Haloxylon ammodendron in the artificial shrub forest, and Reaumuria soongorica in the Gobi, as well as for local soil water and groundwater, and precipitation in the upper reaches of the Heihe River Basin. Our results showed that soil water and shallow groundwater of the riparian forest and the artificial shrub forest were recharged by river water which originated from precipitation in the upper reaches, and strong evaporation occurred in the artificial shrub forest. Soil water of the Gobi was not affected by Heihe River water due to this area being far away from the river channel. The main water sources of Populous euphratica were from 40-60-cm soil water and groundwater, and of Tamarix ramosissima were from 40-80-cm soil water in the riparian forest ecosystem. In the artificial forest, Haloxylon ammodendron used 200-cm saturated-layer soil water and shallow groundwater. The Reaumuria soongorica mainly used soil water from the 175-200-cm depth in the Gobi. Therefore, soil water and groundwater are the main water sources which maintain survival and growth of the plants in the extremely arid regions of the lower reaches of the Heihe River Basin.
基金the National Science Foundation of China (30770339)
文摘We examined stable isotope signals of precipitation, soil water, and xylem water and ran the multi-source linear mixing model (IsoSource) to determine water uptake depths and estimate proportional contribution of possible water pools to the water use of Mongolian pine (Pinus sylvestris var. mongolica) plantation in southeast Horqin Sandy Land. We also examined variations of the water use by Mongolian pine trees before and after a heavy precipitation event. The closeness of isotopic composition between xylem water and potential water pools presented that most of water uptake by the trees occurred in the depth of below 20 cm soil (up to 80 cm in this study). Estimate from the IsoSource model agrees well with observation, and the model yielded that over 60% of the water was derived from 20–80 cm soil layer under relatively higher soil moisture conditions, contribution from much deeper soil depth may increase when the soil in this layer became dry. The contribution from the groundwater was very low since water table was much deeper than rooting depth of the trees. Isotopic signals of xylem water of Mongolian pine trees before and after a heavy precipitation of 14.4 mm on July 13 in 2009 exhibited that the trees could sense and use recent rain-charged soil water at the upper 20 cm soil layer 36 hours after the rain, and this contribution decreased rapidly in the following 24 hours. The ability of accessing different water pools of Mongolian pine trees under various soil moisture conditions is likely a good indicator of their adaptability to dry habitats in sandy lands.
基金National Natural Science Foundation of China (Grant Nos. 40471001 and 90411017)
文摘Multi-proxies of lacustrine sediments, such as total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), total nitrogen (TN), total sulfur (TS), hydrogen index (HI), oxygen index (OI) and stable carbon isotopic composition of organic matter (δ^(13)C_(org)), were analyzed using a 7.3 m core from Zige Tangco. The source of the organic matter in the sediment was mainly from autochthonous phyto-plankton, therefore the significances of proxies can be interpreted as that high TOC, TOC/TS, HI and δ^(13)C_(org) values, low TC, TIC values corresponded to warm and wet climatic condition, and vice versa. The process of climatic development in the Zige Tangco region was hence recovered. During the early and Mid-Holocene, the climate was warm and wet and intensive cold events occurred during the periods of 8600 to 8400 cal a BP and 7400 to 7000 cal a BP. In the second half of Holocene, the climate became cold and dry gradually. The palaeoclimatic process during Holocene in Zige Tangco region matched well with that in Co Ngoin region which is ca 40 km to the south-east. Therefore this palaeoclimatic process represents the Holocene climatic feature in the Central Tibetan Plateau which has the same pattern in the Northern Tibetan Plateau, but the time and duration of some climatic events might be different. We can conclude that in Holocene solar insolation controlled the climatic pattern on the central Tibetan Plateau.