Surface structures and properties of Sn islands grown on superconducting substrate 2H-NbSe2(0001)are studied using low temperature scanning tunneling microscopy or spectroscopy.The pure face-centered cubic(fee)str...Surface structures and properties of Sn islands grown on superconducting substrate 2H-NbSe2(0001)are studied using low temperature scanning tunneling microscopy or spectroscopy.The pure face-centered cubic(fee)structure of Sn surface is obtained.Superconductivity is also detected on the fcc-Sn(111)surface,and the size of superconducting gap on the Sn surface is nearly the same as that on the superconducting substrate.Furthermore,phase transition occurs from fcc-Sn(111)toβ-Sn(001)by keeping the sample at room temperature for a certain time.Due to the strain relaxation on theβ-Sn islands,both the in-plane unit cell and out-of-plane structures distort,and the height of surface atoms varies periodically to form a universal ripple structure.展开更多
Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were ...Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were used to better understand the differentiating characteristics of turbulence regimes and vertical turbulence structure of urban the NBL.As for heights above the urban canopy layer(UCL),the relationship between turbulence velocity scale(VTKE)and wind speed(V)was consistent with the“HOckey-Stick”(HOST)theory proposed for a relatively flat area.Four regimes have been identified according to urban nocturnal stable boundary layer.Regime 1 occurs where local shear plays a leading role for weak turbulence under the constraint that the wind speed V<VT(threshold wind speed).Regime 2 is determined by the existence of strong turbulence that occurs when V>VT and is mainly driven by bulk shear.Regime 3 is identified by the existence of moderate turbulence when upside-down turbulence sporadic bursts occur in the presence of otherwise weak turbulence.Regime 4 is identified as buoyancy turbulence,when V>VT,and the turbulence regime is affected by a combination of local wind shear,bulk shear and buoyancy turbulence.The turbulence activities demonstrated a weak thermal stratification dependency in regime 1,for which within the UCL,the turbulence intensity was strongly affected by local wind shear when V<VT.This study further showed typical examples of different stable boundary layers and the variations between turbulence regimes by analyzing the evolution of wind vectors.Partly because of the influence of large-scale motions,the power spectral density of vertical velocity for upsidedown structure showed an increase at low frequencies.The upside-down structures were also characterized by the highest frequency of the stable stratifications in the higher layer.展开更多
Rechargeable magnesium batteries(RMBs)hold promise for offering higher volumetric energy density and safety features,attracting increasing research interest as the next post lithium-ion batteries.Developing high perfo...Rechargeable magnesium batteries(RMBs)hold promise for offering higher volumetric energy density and safety features,attracting increasing research interest as the next post lithium-ion batteries.Developing high performance cathode material by inducing multi-electron reaction process as well as maintaining structural stability is the key to the development and application of RMBs.Herein,multielectron reaction occurred in VS_(4)by simple W doping strategy.W doping induces valence of partial V as V^(2+)and V^(3+)in VS_(4)structure,and then stimulates electrochemical reaction involving multi-electrons in 0.5%W-V-S.The flower-like microsphere morphology as well as rich S vacancies is also modulated by W doping to neutralize structure change in such multi-electron reaction process.The fabricated 0.5%W-V-S delivers higher specific capacity(149.3 m A h g^(-1)at 50 m A g^(-1),which is 1.6 times higher than that of VS_(4)),superior rate capability(76 mA h g^(-1)at 1000 mA g^(-1)),and stable cycling performance(1500cycles with capacity retention ratio of 93.8%).Besides that,pesudocapaticance-like contribution analysis as well as galvanostatic intermittent titration technique(GITT)further confirms the enhanced Mg^(2+)storage kinetics during such multi-electron involved electrochemical reaction process.Such discovery provides new insights into the designing of multi-electron reaction process in cathode as well as neutralizing structural change during such reaction for realizing superior electrochemical performance in energy storage devices.展开更多
Fe based cast alloys with double phases structure of m etastable austenite m atrix an d eutecticcarbide M7 C3 were provided with the excellent properties of high abrasion resistance andhigher i m pact toughness . ...Fe based cast alloys with double phases structure of m etastable austenite m atrix an d eutecticcarbide M7 C3 were provided with the excellent properties of high abrasion resistance andhigher i m pact toughness . An i m portant reason of high abrasion resistance is hard ness violentincreasing on the m atrix surface because of w ear easily induced m artensite transfor m ation . The exploitation and applications of m etastable austenite m atrix wear alloys of Fe C Cr Nisyste m and Fe C Cr Mn system were described in this paper . The excellent properties of thesealloys w ill be sufficiently indicated by authors’exa m ples . To exploit a class of these alloyswith high abrasion resistance and various im pact toughness for m eeting the requirem ent of dif ferent environ ment , the proble m of the structure design of metastable austenite m atrix wearalloy w as also described in this paper .展开更多
Oxygen and carbon isotope ratios(δ^(18)O and δ^(13)C) in otoliths were used to identify the stock structure of small yellow croaker,Larimichthys polyactis.Otoliths were collected from fish at five locations ac...Oxygen and carbon isotope ratios(δ^(18)O and δ^(13)C) in otoliths were used to identify the stock structure of small yellow croaker,Larimichthys polyactis.Otoliths were collected from fish at five locations across the Yellow Sea and the Bohai Sea representing most of their distributional range and fisheries areas.The significant differences in the isotopic signatures showed that the five locations could be chemically distinguished and clearly separated,indicating stock subdivision.Correlation of δ^(18)O and δ^(13)C values suggested that population of L.polyactis could be divided into the Bohai Sea group,the southern Yellow Sea group and the central Yellow Sea group.Discriminant analysis of δ^(18)O and δ^(13)C values demonstrated a high significant difference with 85.7% classification accuracy.The spatial separation of L.polyactis indicated a complex stock structure across the Yellow Sea and the Bohai Sea.These results indicate that optimal fisheries management may require a comprehensive consideration on the current spatial arrangements.This study has provided further evidence that measurement of the stable isotopes ratios in otolith can be a valuable tool in the delineation of fishery management units.展开更多
Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal sp...Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in dif ferent trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic dif ferences between basins with dif ferent environmental characteristics. Such differences likely result from isotopic baseline dif ferences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.展开更多
The aqueous rechargeable Zn-ion batteries based on the safe,low cost and environmental benignity aqueous electrolytes are one of the most compelling candidates for large scale energy storage applications.However,pursu...The aqueous rechargeable Zn-ion batteries based on the safe,low cost and environmental benignity aqueous electrolytes are one of the most compelling candidates for large scale energy storage applications.However,pursuing suitable insertion materials may be a great challenge due to the strong electrostatic interaction between Zn^(^(2+))and cathode materials.Hence,a novel NaV_(6)O_(15)/V_(2)O_(5) skin-core heterostructure nanowire is reported via a one-step hydrothermal method and subsequent calcination for high-stable aqueous Zn-ion batteries(ZIBs).The NaV_(6)O_(15)/V_(2)O_(5) cathode delivers high specific capacity of 390 m Ah/g at 0.3 A/g and outstanding cycling stability of 267 m Ah/g at 5 A/g with high capacity retention over 92.3%after 3000 cycles.The superior electrochemical performances are attributed to the synergistic effect of skin-core heterostructured NaV_(6)O_(15)/V_(2)O_(5),in which the sheath of NaV_(6)O_(15) possesses high stability and conductivity,and the V_(2)O_(5) endows high specific capacity.Besides,the heterojunction structure not only accelerates intercalation kinetics of Zn^(2+)transport but also further consolidates the stability of the layers of V_(2)O_(5) during the cyclic process.This work provides a new perspective in developing feasible insertion materials for rechargeable aqueous ZIBs.展开更多
In this paper, we study the homotopy category of unbounded complexes of strongly copure projective modules with bounded relative homologies K;(SCP).We show that the existence of a right recollement of K;(SCP) with...In this paper, we study the homotopy category of unbounded complexes of strongly copure projective modules with bounded relative homologies K;(SCP).We show that the existence of a right recollement of K;(SCP) with respect to K;(SCP), K;(SCP) and K;(SCP) has the homotopy category of strongly copure projective acyclic complexes as a triangulated subcategory in some case.展开更多
Variable-composition evolutionary structure searches are used to explore stable stoichiometries for the Zn-O system below 300 GPa. Our results confirm the previous structural phase transition sequence of pressurised Z...Variable-composition evolutionary structure searches are used to explore stable stoichiometries for the Zn-O system below 300 GPa. Our results confirm the previous structural phase transition sequence of pressurised ZnO. ZnO is thermodynamically stable up to 300GPa and zinc peroxide (Zn02, space group Pa3) is metastable under lower pressure. Insulating I4/mcm-Zn02 is thermodynamically stable between 128.3-300 GPa. Insulated metastable P3121-Zn02, controlling the pressure range of 51.5-128.3 GPa, has a wide band gap compared to the Pa3-Zn02 and I4/mem-Zn02. Phonon and elastic constant calculations conclude the dynamical and mechanical stability for the explored thermodynamically stable or metastable structures.展开更多
Amorphous carbon films have attracted substantial interest due to their exceptional mechanical and tribological properties.Previous studies revealed that the amorphous carbon films exhibited lower coefficient of frict...Amorphous carbon films have attracted substantial interest due to their exceptional mechanical and tribological properties.Previous studies revealed that the amorphous carbon films exhibited lower coefficient of friction(COF)because of the transformation in bond structure from sp^(3)-C to sp^(2)-C during friction processes.However,the mechanism for such a transformation during friction is not well understood.This study is conducted to get an insight into the metastable transformation in amorphous carbon film during friction by means of experiments and molecular dynamics(MD)simulation.Relevant wear tests showed that wear of the film changed from an abrasive wear mode to a mixture of abrasion and adhesive wear,resulting in a decrease in growth rate of the wear rate after the running-in stage.It is worth noting that the sp^(3)-C atoms were increased during the running-in stage when the films contained lower sp^(3)/sp^(2) ratios.However,the formed sp^(3)-C atoms could only be short-lived and gradually transformed to sp^(2)-C atoms with the graphitization generated on the wearing surface of the films.The radial distribution function and translational order parameter indicated that the films'high sp^(3)/sp^(2) ratio led to an increased sp^(2)-C proportion on the wear scar after friction,which caused an increased structural ordering.展开更多
Exploration of metastable phases holds profound implications for functional materials.Herein,we engineer the metastable phase to enhance the thermo-electric performance of germanium selenide(GeSe)through tailoring the...Exploration of metastable phases holds profound implications for functional materials.Herein,we engineer the metastable phase to enhance the thermo-electric performance of germanium selenide(GeSe)through tailoring the chemical bonding mechanism.Initially,AgInTe2 alloying fosters a transition from stable orthorhombic to metastable rhombohedral phase in GeSe by substantially promoting p-state electron bonding to form metavalent bonding(MVB).Besides,extra Pb is employed to prevent a transition into a stable hexagonal phase at elevated temperatures by moderately enhancing the degree of MVB.The stabilization of the metastable rhombohedral phase generates an optimized bandgap,sharpened valence band edge,and stimulative band convergence compared to stable phases.This leads to decent carrier concentra-tion,improved carrier mobility,and enhanced density-of-state effective mass,culminating in a superior power factor.Moreover,lattice thermal conductivity is suppressed by pronounced lattice anharmonicity,low sound velocity,and strong phonon scattering induced by multiple defects.Consequently,a maximum zT of 1.0 at 773 K is achieved in(Ge_(0.98)Pb_(0.02)Se)_(0.875)(AgInTe_(2))_(0.125),resulting in a maximum energy conversion efficiency of 4.90%under the temperature difference of 500 K.This work underscores the significance of regulating MVB to stabilize metastable phases in chalcogenides.展开更多
Based on the work discussed on the former study, this article first starts from the mathematical model of a kind of complicated financial system, and analyses all possible things that the model shows in the operation ...Based on the work discussed on the former study, this article first starts from the mathematical model of a kind of complicated financial system, and analyses all possible things that the model shows in the operation of our country's macro_financial system: balance, stable periodic, fractal, Hopf_bifurcation, the relationship between parameters and Hopf_bifurcation, and chaotic motion etc. By the changes of parameters of all economic meanings, the conditions on which the complicated behaviors occur in such a financial system, and the influence of the adjustment of the macro_economic policies and adjustment of some parameter on the whole financial system behavior have been analyzed. This study will deepen people's understanding of the lever function of all kinds of financial policies.展开更多
Based on the work discussed on the former study, this article first starts from the mathematical model of a kind of complicated financial system, and analyses all possible things that the model shows in the operation ...Based on the work discussed on the former study, this article first starts from the mathematical model of a kind of complicated financial system, and analyses all possible things that the model shows in the operation of our country's macro_financial system: balance, stable periodic, fractal, Hopf_bifurcation, the relationship between parameters and Hopf_bifurcation, and chaotic motion etc. By the changes of parameters of all economic meanings, the conditions on which the complicated behaviors occur in such a financial system, and the influence of the adjustment of the macro_economic policies and adjustment of some parameter on the whole financial system behavior have been analyzed. This study will deepen people's understanding of the lever function of all kinds of financial policies.展开更多
A melt maintained for hours in a press pour unit allowed the following changes over time from spheroidal graphite to compacted graphite iron by casting thermal cups at regular time intervals.This provided extensive ex...A melt maintained for hours in a press pour unit allowed the following changes over time from spheroidal graphite to compacted graphite iron by casting thermal cups at regular time intervals.This provided extensive experimental information for checking the possibility of simulating solidification of compacted graphite irons by means of a microstructure modelling approach.During solidification,compacted graphite develops very much as lamellar graphite but with much less branching.On this basis,a simulation of the thermal analysis records was developed which considers solidification proceeding in a pseudo binary Fe-C system.The simulated curves were compared with the experimental ones obtained from three representative alloys that cover the whole microstructure change during the holding of the melt.The most relevant result is that the parameter describing branching capability of graphite is the most important for reproducing the minimum eutectic temperature and the recalescence which are so characteristic of the solidification of compacted graphite cast irons.展开更多
The food sources of aquacultured Apostichopus japonicus and the trophic levels of organisms in a sea cucumber(A. japonicus) and prawn(Penaeus japonica) polyculture system in a saltwater pond in Zhuanghe, Liaoning ...The food sources of aquacultured Apostichopus japonicus and the trophic levels of organisms in a sea cucumber(A. japonicus) and prawn(Penaeus japonica) polyculture system in a saltwater pond in Zhuanghe, Liaoning Province were examined using carbon and nitrogen stable isotopes. Across organisms, δ13C ranged from(–25.47±0.20)‰ to(–16.48±0.17)‰(mean±SD), and δ15N ranged from(4.23±0.49)‰ to(12.44±0.09)‰. The δ13C and δ15N contents of A. japonicus, P. japonica and Fenneropenaeus chinensis were comparatively higher than those of other organisms. Values of δ13C and δ15N revealed that P. japonica, Hemigrapsus sanguineus and Neomysis japonica comprised the largest component of the diet of A. japonicus. The mean trophic level of the organisms in this saltwater pond polyculture system was(2.75±0.08). P. japonica, A. japonicus, F. chinensis,Synechogobius hasta and Neomysis japonica were in the 3rd trophic level(2–3); jellyfish, H. sanguineus and zooplankton were in the 2nd trophic level(1–2); and Enteromorpha prolifera, benthic microalgae, periphyton and suspended matter primarily consisting of phytoplankton, bacteria and humus were in the primary trophic level(0–1).展开更多
The phase behaviors and structures of a triphenylene-derived discotic liquid crystal (LC) hexa-n-octoxyl- triphenylene (C8HET) were studied using the combined techniques of differential scanning calorimetry (DSC...The phase behaviors and structures of a triphenylene-derived discotic liquid crystal (LC) hexa-n-octoxyl- triphenylene (C8HET) were studied using the combined techniques of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), selected area electron diffraction (SAED) and polarized light microscopy (PLM). Onedimensional (1D) powder WAXD results at different temperatures coupled with DSC and PLM observations revealed that the C8HET compound possessed an LC phase and three different crystalline (K3, K2 and K1) phases below the isotropic (I) melt. The I←→ LC phase transition was thermodynamically reversible and independent of the heating and cooling rates. The development and experimental observation of the three crystalline phases relied on different thermal histories. Among the three crystalline phases in CSHET, the K3 phase is the most stable phase, while the K2 and K1 phases are metastable. Note that the K1 phase only formed via a quenching process. Oh the basis of structure sensitive diffraction experiments such as 2D WAXD of oriented samples and SAED of single crystals, detailed structures and molecular packings of these four ordered phases were identified. The LC phase exhibited a hexagonal columnar phase with 2D lattice dimensions ofa = b = 2.38 nm and γ= 120°. All the three crystalline phases possess monoclinic unit cells, yet the y angle is not 90° in the cases of the K2 and the K3 phases, while in the case of the K1 phase the a angle is not 90°.展开更多
The structural stability and magnetic properties of the icosahedral Ni13, Ni13^+1 and Ni13^-1 clusters have been obtained by utilizing all-electron density functional theory with the generalized gradient approximatio...The structural stability and magnetic properties of the icosahedral Ni13, Ni13^+1 and Ni13^-1 clusters have been obtained by utilizing all-electron density functional theory with the generalized gradient approximations for the exchange-correlation energy. The calculated results show that the ground states of neutral and charged clusters all favour a D3d structure, a distorted icosahedron, due to the Jahn-Teller effect. The radial distortions caused by doping one electron and by doping one hole are opposite to each other. Doping one electron will result in a 1/2 decrease and doping one hole will result in a 1/2 increase of the total spin. Both increasing interatomic spacing and decreasing coordination will lead to an enhancement of the spin magnetic moments for Nil3 clusters.展开更多
The construction and surface modification of three-dimensional(3D) graphene structures have been recognized as effective ways to prepare high-performance graphene-based composites in energy-related applications. Herei...The construction and surface modification of three-dimensional(3D) graphene structures have been recognized as effective ways to prepare high-performance graphene-based composites in energy-related applications. Herein, on the basis of well-defined morphology and efficient electron conduction, the 3D highly-stable graphene hollow nanospheres have been synthesized by using sacrificial template method. The asprepared 3D graphene nanospheres exhibit superior mechanical stability, electrochemical stability, and strong hydrophobicity, which may accelerate the emission of H2O in acidic medium-based ORR. Accordingly, the 3D highly-stable graphene nanospheres are used to confine tiny Pt nanoparticles(3Dr-GO@Pt HNSs) for ORR in acidic medium, exhibiting superior activity with 4-electron-transfered pathway. Meanwhile,dramatically improved durability are achieved in terms of both ORR mass activity and electrochemically surface area compared to those of commercial Pt/C.展开更多
In this paper, we study the topological structure of the singular points of the third order phase locked loop equations with the character of detected phase being g(?) =(1+k)sin?/1+kcos?.
This work presents isotopic data for the non-traditional isotope systems Fe,Cu,and Zn on a set of Chicxulub impactites and target lithologies with the aim of better documenting the dynamic processes taking place durin...This work presents isotopic data for the non-traditional isotope systems Fe,Cu,and Zn on a set of Chicxulub impactites and target lithologies with the aim of better documenting the dynamic processes taking place during hypervelocity impact events,as well as those affecting impact structures during the post-impact phase.The focus lies on material from the recent IODP-ICDP Expedition 364 Hole M0077A drill core obtained from the offshore Chicxulub peak ring.Two ejecta blanket samples from the UNAM 5 and 7 cores were used to compare the crater lithologies with those outside of the impact structure.The datasets of bulk Fe,Cu,and Zn isotope ratios are coupled with petrographic observations and bulk major and trace element compositions to disentangle equilibrium isotope fractionation effects from kinetic processes.The observed Fe and Cu isotopic signatures,with δ^(56/54)Fe ranging from0.95‰to 0.58‰and δ^(65/63)Cu from0.73‰to 0.14‰,mostly reflect felsic,mafic,and carbonate target lithology mixing and secondary sulfide mineral formation,the latter associated to the extensive and long-lived(>105 years)hydrothermal system within Chicxulub structure.On the other hand,the stable Zn isotope ratios provide evidence for volatility-governed isotopic fractionation.The heavier Zn isotopic compositions observed for the uppermost part of the impactite sequence and a metamorphic clast(δ^(66/64)Zn of up to 0.80‰and 0.87‰,respectively)relative to most basement lithologies and impact melt rock units indicate partial vaporization of Zn,comparable to what has been observed for Cretaceous-Paleogene boundary layer sediments around the world,as well as for tektites from various strewn fields.In contrast to previous work,our data indicate that an isotopically light Zn reservoir(δ^(66/64)Zn down to0.49‰),of which the existence has previously been suggested based on mass balance considerations,may reside within the upper impact melt rock(UIM)unit.This observation is restricted to a few UIM samples only and cannot be extended to other target or impact melt rock units.Light isotopic signatures of moderately volatile elements in tektites and microtektites have previously been linked to(back-)condensation under distinct kinetic regimes.Although some of the signatures observed may have been partially overprinted during post-impact processes,our bulk data confirm impact volatilization and condensation of Zn,which may be even more pronounced at the microscale,with variable degrees of mixing between isotopically distinct reservoirs,not only at proximal to distal ejecta sites,but also within the lithologies associated with the Chicxulub impact crater.展开更多
基金Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301003 and 2016YFA0300403the National Natural Science Foundation of China under Grant Nos 11521404,11634009,U1632102,11504230,11674222,11574202,11674226,11574201 and U1632272
文摘Surface structures and properties of Sn islands grown on superconducting substrate 2H-NbSe2(0001)are studied using low temperature scanning tunneling microscopy or spectroscopy.The pure face-centered cubic(fee)structure of Sn surface is obtained.Superconductivity is also detected on the fcc-Sn(111)surface,and the size of superconducting gap on the Sn surface is nearly the same as that on the superconducting substrate.Furthermore,phase transition occurs from fcc-Sn(111)toβ-Sn(001)by keeping the sample at room temperature for a certain time.Due to the strain relaxation on theβ-Sn islands,both the in-plane unit cell and out-of-plane structures distort,and the height of surface atoms varies periodically to form a universal ripple structure.
基金supported by the National Natural Science Foundation of China (Grant No. 42105093 and 41975018)the China Postdoctoral Science Foundation (Grant No. 2020M670420)the Special Research Assistant Project。
文摘Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were used to better understand the differentiating characteristics of turbulence regimes and vertical turbulence structure of urban the NBL.As for heights above the urban canopy layer(UCL),the relationship between turbulence velocity scale(VTKE)and wind speed(V)was consistent with the“HOckey-Stick”(HOST)theory proposed for a relatively flat area.Four regimes have been identified according to urban nocturnal stable boundary layer.Regime 1 occurs where local shear plays a leading role for weak turbulence under the constraint that the wind speed V<VT(threshold wind speed).Regime 2 is determined by the existence of strong turbulence that occurs when V>VT and is mainly driven by bulk shear.Regime 3 is identified by the existence of moderate turbulence when upside-down turbulence sporadic bursts occur in the presence of otherwise weak turbulence.Regime 4 is identified as buoyancy turbulence,when V>VT,and the turbulence regime is affected by a combination of local wind shear,bulk shear and buoyancy turbulence.The turbulence activities demonstrated a weak thermal stratification dependency in regime 1,for which within the UCL,the turbulence intensity was strongly affected by local wind shear when V<VT.This study further showed typical examples of different stable boundary layers and the variations between turbulence regimes by analyzing the evolution of wind vectors.Partly because of the influence of large-scale motions,the power spectral density of vertical velocity for upsidedown structure showed an increase at low frequencies.The upside-down structures were also characterized by the highest frequency of the stable stratifications in the higher layer.
基金supported by the National Natural Science Foundation of China under Grant No.52072196,52002200,52102106,52202262,22379081,and 22379080Major Basic Research Program of the Natural Science Foundation of Shandong Province under Grant No.ZR2020ZD09+1 种基金the Natural Science Foundation of Shandong Province under Grant No.ZR2020QE063,ZR202108180009,ZR2023QE059the Postdoctoral Program in Qingdao under No.QDBSH20220202019。
文摘Rechargeable magnesium batteries(RMBs)hold promise for offering higher volumetric energy density and safety features,attracting increasing research interest as the next post lithium-ion batteries.Developing high performance cathode material by inducing multi-electron reaction process as well as maintaining structural stability is the key to the development and application of RMBs.Herein,multielectron reaction occurred in VS_(4)by simple W doping strategy.W doping induces valence of partial V as V^(2+)and V^(3+)in VS_(4)structure,and then stimulates electrochemical reaction involving multi-electrons in 0.5%W-V-S.The flower-like microsphere morphology as well as rich S vacancies is also modulated by W doping to neutralize structure change in such multi-electron reaction process.The fabricated 0.5%W-V-S delivers higher specific capacity(149.3 m A h g^(-1)at 50 m A g^(-1),which is 1.6 times higher than that of VS_(4)),superior rate capability(76 mA h g^(-1)at 1000 mA g^(-1)),and stable cycling performance(1500cycles with capacity retention ratio of 93.8%).Besides that,pesudocapaticance-like contribution analysis as well as galvanostatic intermittent titration technique(GITT)further confirms the enhanced Mg^(2+)storage kinetics during such multi-electron involved electrochemical reaction process.Such discovery provides new insights into the designing of multi-electron reaction process in cathode as well as neutralizing structural change during such reaction for realizing superior electrochemical performance in energy storage devices.
文摘Fe based cast alloys with double phases structure of m etastable austenite m atrix an d eutecticcarbide M7 C3 were provided with the excellent properties of high abrasion resistance andhigher i m pact toughness . An i m portant reason of high abrasion resistance is hard ness violentincreasing on the m atrix surface because of w ear easily induced m artensite transfor m ation . The exploitation and applications of m etastable austenite m atrix wear alloys of Fe C Cr Nisyste m and Fe C Cr Mn system were described in this paper . The excellent properties of thesealloys w ill be sufficiently indicated by authors’exa m ples . To exploit a class of these alloyswith high abrasion resistance and various im pact toughness for m eeting the requirem ent of dif ferent environ ment , the proble m of the structure design of metastable austenite m atrix wearalloy w as also described in this paper .
基金The National Basic Research Program(973 Program)of China under contract Nos 2015CB453300 and 2010CB428900
文摘Oxygen and carbon isotope ratios(δ^(18)O and δ^(13)C) in otoliths were used to identify the stock structure of small yellow croaker,Larimichthys polyactis.Otoliths were collected from fish at five locations across the Yellow Sea and the Bohai Sea representing most of their distributional range and fisheries areas.The significant differences in the isotopic signatures showed that the five locations could be chemically distinguished and clearly separated,indicating stock subdivision.Correlation of δ^(18)O and δ^(13)C values suggested that population of L.polyactis could be divided into the Bohai Sea group,the southern Yellow Sea group and the central Yellow Sea group.Discriminant analysis of δ^(18)O and δ^(13)C values demonstrated a high significant difference with 85.7% classification accuracy.The spatial separation of L.polyactis indicated a complex stock structure across the Yellow Sea and the Bohai Sea.These results indicate that optimal fisheries management may require a comprehensive consideration on the current spatial arrangements.This study has provided further evidence that measurement of the stable isotopes ratios in otolith can be a valuable tool in the delineation of fishery management units.
基金Supported by the "Chen Guang" Project of Shanghai Municipal Education Commission(No.10CG52)the Shanghai Education Development Foundation(No.11YZ155)the National Natural Science Foundation of China(Nos.41206124,41541024)
文摘Food web structures are well known to vary widely among ecosystems. Moreover, many food web studies of lakes have generally attempted to characterize the overall food web structure and have largely ignored internal spatial and environmental variations. In this study, we hypothesize that there is a high degree of spatial heterogeneity within an ecosystem and such heterogeneity may lead to strong variations in environmental conditions and resource availability, in turn resulting in dif ferent trophic pathways. Stable carbon and nitrogen isotopes were employed for the whole food web to describe the structure of the food web in different sub-basins within Taihu Lake. This lake is a large eutrophic freshwater lake that has been intensively managed and highly influenced by human activities for more than 50 years. The results show significant isotopic dif ferences between basins with dif ferent environmental characteristics. Such differences likely result from isotopic baseline dif ferences combining with a shift in food web structure. Both are related to local spatial heterogeneity in nutrient loading in waters. Such variation should be explicitly considered in future food web studies and ecosystem-based management in this lake ecosystem.
基金the financial support from the National Natural Science Foundation of China(Nos.21878231 and 51603145)the Tianjin Natural Science Foundation of China(Nos.17JC ZDJ38100 and 19JCZDJC37300)+2 种基金the Science and Technology Plans of Tianjin(Nos.17PT SYJC00040 and 18PTSY JC00180)the China National Textile and Apparel Council(J201406)the China Petroleum Chemical Co Technology Development Project(216090 and 218008-6)。
文摘The aqueous rechargeable Zn-ion batteries based on the safe,low cost and environmental benignity aqueous electrolytes are one of the most compelling candidates for large scale energy storage applications.However,pursuing suitable insertion materials may be a great challenge due to the strong electrostatic interaction between Zn^(^(2+))and cathode materials.Hence,a novel NaV_(6)O_(15)/V_(2)O_(5) skin-core heterostructure nanowire is reported via a one-step hydrothermal method and subsequent calcination for high-stable aqueous Zn-ion batteries(ZIBs).The NaV_(6)O_(15)/V_(2)O_(5) cathode delivers high specific capacity of 390 m Ah/g at 0.3 A/g and outstanding cycling stability of 267 m Ah/g at 5 A/g with high capacity retention over 92.3%after 3000 cycles.The superior electrochemical performances are attributed to the synergistic effect of skin-core heterostructured NaV_(6)O_(15)/V_(2)O_(5),in which the sheath of NaV_(6)O_(15) possesses high stability and conductivity,and the V_(2)O_(5) endows high specific capacity.Besides,the heterojunction structure not only accelerates intercalation kinetics of Zn^(2+)transport but also further consolidates the stability of the layers of V_(2)O_(5) during the cyclic process.This work provides a new perspective in developing feasible insertion materials for rechargeable aqueous ZIBs.
文摘In this paper, we study the homotopy category of unbounded complexes of strongly copure projective modules with bounded relative homologies K;(SCP).We show that the existence of a right recollement of K;(SCP) with respect to K;(SCP), K;(SCP) and K;(SCP) has the homotopy category of strongly copure projective acyclic complexes as a triangulated subcategory in some case.
基金Supported by the National Natural Science Foundation of China under Grant No 11347007the Qing Lan Project+1 种基金the Colleges and Universities in Jiangsu Province Natural Science Research Project under Grant No 14KJB460013the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Variable-composition evolutionary structure searches are used to explore stable stoichiometries for the Zn-O system below 300 GPa. Our results confirm the previous structural phase transition sequence of pressurised ZnO. ZnO is thermodynamically stable up to 300GPa and zinc peroxide (Zn02, space group Pa3) is metastable under lower pressure. Insulating I4/mcm-Zn02 is thermodynamically stable between 128.3-300 GPa. Insulated metastable P3121-Zn02, controlling the pressure range of 51.5-128.3 GPa, has a wide band gap compared to the Pa3-Zn02 and I4/mem-Zn02. Phonon and elastic constant calculations conclude the dynamical and mechanical stability for the explored thermodynamically stable or metastable structures.
基金This work was co-supported by the National Natural Science Foundation of China(No.51905466)Aeronautical Science Foundation of China(No.201945099002)+1 种基金Natural Science Foundation of Hebei Province,China(Nos.E2021203191 and E2020203184)Youth Top Talent Project of Hebei Province Higher Education,China(No.BJ2019058).
文摘Amorphous carbon films have attracted substantial interest due to their exceptional mechanical and tribological properties.Previous studies revealed that the amorphous carbon films exhibited lower coefficient of friction(COF)because of the transformation in bond structure from sp^(3)-C to sp^(2)-C during friction processes.However,the mechanism for such a transformation during friction is not well understood.This study is conducted to get an insight into the metastable transformation in amorphous carbon film during friction by means of experiments and molecular dynamics(MD)simulation.Relevant wear tests showed that wear of the film changed from an abrasive wear mode to a mixture of abrasion and adhesive wear,resulting in a decrease in growth rate of the wear rate after the running-in stage.It is worth noting that the sp^(3)-C atoms were increased during the running-in stage when the films contained lower sp^(3)/sp^(2) ratios.However,the formed sp^(3)-C atoms could only be short-lived and gradually transformed to sp^(2)-C atoms with the graphitization generated on the wearing surface of the films.The radial distribution function and translational order parameter indicated that the films'high sp^(3)/sp^(2) ratio led to an increased sp^(2)-C proportion on the wear scar after friction,which caused an increased structural ordering.
基金National Key R&D Program of China,Grant/Award Number:2021YFB1507403National Natural Science Foundation of China,Grant/Award Number:52071218+1 种基金China Postdoctoral Science Foundation,Grant/Award Number:2022M722170Shenzhen University 2035 Program for Excellent Research,Grant/Award Number:00000218。
文摘Exploration of metastable phases holds profound implications for functional materials.Herein,we engineer the metastable phase to enhance the thermo-electric performance of germanium selenide(GeSe)through tailoring the chemical bonding mechanism.Initially,AgInTe2 alloying fosters a transition from stable orthorhombic to metastable rhombohedral phase in GeSe by substantially promoting p-state electron bonding to form metavalent bonding(MVB).Besides,extra Pb is employed to prevent a transition into a stable hexagonal phase at elevated temperatures by moderately enhancing the degree of MVB.The stabilization of the metastable rhombohedral phase generates an optimized bandgap,sharpened valence band edge,and stimulative band convergence compared to stable phases.This leads to decent carrier concentra-tion,improved carrier mobility,and enhanced density-of-state effective mass,culminating in a superior power factor.Moreover,lattice thermal conductivity is suppressed by pronounced lattice anharmonicity,low sound velocity,and strong phonon scattering induced by multiple defects.Consequently,a maximum zT of 1.0 at 773 K is achieved in(Ge_(0.98)Pb_(0.02)Se)_(0.875)(AgInTe_(2))_(0.125),resulting in a maximum energy conversion efficiency of 4.90%under the temperature difference of 500 K.This work underscores the significance of regulating MVB to stabilize metastable phases in chalcogenides.
文摘Based on the work discussed on the former study, this article first starts from the mathematical model of a kind of complicated financial system, and analyses all possible things that the model shows in the operation of our country's macro_financial system: balance, stable periodic, fractal, Hopf_bifurcation, the relationship between parameters and Hopf_bifurcation, and chaotic motion etc. By the changes of parameters of all economic meanings, the conditions on which the complicated behaviors occur in such a financial system, and the influence of the adjustment of the macro_economic policies and adjustment of some parameter on the whole financial system behavior have been analyzed. This study will deepen people's understanding of the lever function of all kinds of financial policies.
文摘Based on the work discussed on the former study, this article first starts from the mathematical model of a kind of complicated financial system, and analyses all possible things that the model shows in the operation of our country's macro_financial system: balance, stable periodic, fractal, Hopf_bifurcation, the relationship between parameters and Hopf_bifurcation, and chaotic motion etc. By the changes of parameters of all economic meanings, the conditions on which the complicated behaviors occur in such a financial system, and the influence of the adjustment of the macro_economic policies and adjustment of some parameter on the whole financial system behavior have been analyzed. This study will deepen people's understanding of the lever function of all kinds of financial policies.
文摘A melt maintained for hours in a press pour unit allowed the following changes over time from spheroidal graphite to compacted graphite iron by casting thermal cups at regular time intervals.This provided extensive experimental information for checking the possibility of simulating solidification of compacted graphite irons by means of a microstructure modelling approach.During solidification,compacted graphite develops very much as lamellar graphite but with much less branching.On this basis,a simulation of the thermal analysis records was developed which considers solidification proceeding in a pseudo binary Fe-C system.The simulated curves were compared with the experimental ones obtained from three representative alloys that cover the whole microstructure change during the holding of the melt.The most relevant result is that the parameter describing branching capability of graphite is the most important for reproducing the minimum eutectic temperature and the recalescence which are so characteristic of the solidification of compacted graphite cast irons.
基金The National Marine Public Welfare Project of China under contract No.201305005
文摘The food sources of aquacultured Apostichopus japonicus and the trophic levels of organisms in a sea cucumber(A. japonicus) and prawn(Penaeus japonica) polyculture system in a saltwater pond in Zhuanghe, Liaoning Province were examined using carbon and nitrogen stable isotopes. Across organisms, δ13C ranged from(–25.47±0.20)‰ to(–16.48±0.17)‰(mean±SD), and δ15N ranged from(4.23±0.49)‰ to(12.44±0.09)‰. The δ13C and δ15N contents of A. japonicus, P. japonica and Fenneropenaeus chinensis were comparatively higher than those of other organisms. Values of δ13C and δ15N revealed that P. japonica, Hemigrapsus sanguineus and Neomysis japonica comprised the largest component of the diet of A. japonicus. The mean trophic level of the organisms in this saltwater pond polyculture system was(2.75±0.08). P. japonica, A. japonicus, F. chinensis,Synechogobius hasta and Neomysis japonica were in the 3rd trophic level(2–3); jellyfish, H. sanguineus and zooplankton were in the 2nd trophic level(1–2); and Enteromorpha prolifera, benthic microalgae, periphyton and suspended matter primarily consisting of phytoplankton, bacteria and humus were in the primary trophic level(0–1).
基金This work was supported by National Science Foundation of USA (DMR-0516602). The 1D X-ray diffraction research was carried out at the National Synchrotron Light Source in Brookhaven National Laboratory supported by the Department of Energy.
文摘The phase behaviors and structures of a triphenylene-derived discotic liquid crystal (LC) hexa-n-octoxyl- triphenylene (C8HET) were studied using the combined techniques of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), selected area electron diffraction (SAED) and polarized light microscopy (PLM). Onedimensional (1D) powder WAXD results at different temperatures coupled with DSC and PLM observations revealed that the C8HET compound possessed an LC phase and three different crystalline (K3, K2 and K1) phases below the isotropic (I) melt. The I←→ LC phase transition was thermodynamically reversible and independent of the heating and cooling rates. The development and experimental observation of the three crystalline phases relied on different thermal histories. Among the three crystalline phases in CSHET, the K3 phase is the most stable phase, while the K2 and K1 phases are metastable. Note that the K1 phase only formed via a quenching process. Oh the basis of structure sensitive diffraction experiments such as 2D WAXD of oriented samples and SAED of single crystals, detailed structures and molecular packings of these four ordered phases were identified. The LC phase exhibited a hexagonal columnar phase with 2D lattice dimensions ofa = b = 2.38 nm and γ= 120°. All the three crystalline phases possess monoclinic unit cells, yet the y angle is not 90° in the cases of the K2 and the K3 phases, while in the case of the K1 phase the a angle is not 90°.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10574036 and 10574037). and the Hebei Natural Science Foundation (Grant Nos A2004000141 and 2005000143).
文摘The structural stability and magnetic properties of the icosahedral Ni13, Ni13^+1 and Ni13^-1 clusters have been obtained by utilizing all-electron density functional theory with the generalized gradient approximations for the exchange-correlation energy. The calculated results show that the ground states of neutral and charged clusters all favour a D3d structure, a distorted icosahedron, due to the Jahn-Teller effect. The radial distortions caused by doping one electron and by doping one hole are opposite to each other. Doping one electron will result in a 1/2 decrease and doping one hole will result in a 1/2 increase of the total spin. Both increasing interatomic spacing and decreasing coordination will lead to an enhancement of the spin magnetic moments for Nil3 clusters.
基金supported by the financial supports from National Natural Science Foundation of China (21503111, 51806110, 21875112 and 21576139)Natural Science Foundation of Jiangsu Higher Education Institutions of China (16KJB150020)+1 种基金Natural Science Foundation of Jiangsu Province (BK20171473)National and Local Joint Engineering Research Center of Biomedical Functional Materials and Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The construction and surface modification of three-dimensional(3D) graphene structures have been recognized as effective ways to prepare high-performance graphene-based composites in energy-related applications. Herein, on the basis of well-defined morphology and efficient electron conduction, the 3D highly-stable graphene hollow nanospheres have been synthesized by using sacrificial template method. The asprepared 3D graphene nanospheres exhibit superior mechanical stability, electrochemical stability, and strong hydrophobicity, which may accelerate the emission of H2O in acidic medium-based ORR. Accordingly, the 3D highly-stable graphene nanospheres are used to confine tiny Pt nanoparticles(3Dr-GO@Pt HNSs) for ORR in acidic medium, exhibiting superior activity with 4-electron-transfered pathway. Meanwhile,dramatically improved durability are achieved in terms of both ORR mass activity and electrochemically surface area compared to those of commercial Pt/C.
文摘In this paper, we study the topological structure of the singular points of the third order phase locked loop equations with the character of detected phase being g(?) =(1+k)sin?/1+kcos?.
基金supported by the Research Foundation Flanders(FWOproject G0A6517N)+8 种基金the Belgian Federal Science Policy Office(BELSPOproject Chicxulub),the Excellence of Science Program(EoS project ET-HoME ID30442502)the VUB Strategic Research Programthe personal PhD fellowship awarded(projects11E6619N,11E6621N)the Fonds de la Recherche Scientifique(FRS-FNRS)for supportthe FWO EoS project ET-HoMEfunding for the acquisition of the MC-ICP-MS instrumentation(ZW15-02–G0H6216N)support from FWO under the form of the aforementioned EoS project and BOF-UGentprovided by IODPICDP Expedition 364,which was jointly funded by the International Ocean Discovery Program and the International Continental Scientific Drilling Program,with contributions and logistical support from the Yucatán State Government and the National Autonomous University of Mexico。
文摘This work presents isotopic data for the non-traditional isotope systems Fe,Cu,and Zn on a set of Chicxulub impactites and target lithologies with the aim of better documenting the dynamic processes taking place during hypervelocity impact events,as well as those affecting impact structures during the post-impact phase.The focus lies on material from the recent IODP-ICDP Expedition 364 Hole M0077A drill core obtained from the offshore Chicxulub peak ring.Two ejecta blanket samples from the UNAM 5 and 7 cores were used to compare the crater lithologies with those outside of the impact structure.The datasets of bulk Fe,Cu,and Zn isotope ratios are coupled with petrographic observations and bulk major and trace element compositions to disentangle equilibrium isotope fractionation effects from kinetic processes.The observed Fe and Cu isotopic signatures,with δ^(56/54)Fe ranging from0.95‰to 0.58‰and δ^(65/63)Cu from0.73‰to 0.14‰,mostly reflect felsic,mafic,and carbonate target lithology mixing and secondary sulfide mineral formation,the latter associated to the extensive and long-lived(>105 years)hydrothermal system within Chicxulub structure.On the other hand,the stable Zn isotope ratios provide evidence for volatility-governed isotopic fractionation.The heavier Zn isotopic compositions observed for the uppermost part of the impactite sequence and a metamorphic clast(δ^(66/64)Zn of up to 0.80‰and 0.87‰,respectively)relative to most basement lithologies and impact melt rock units indicate partial vaporization of Zn,comparable to what has been observed for Cretaceous-Paleogene boundary layer sediments around the world,as well as for tektites from various strewn fields.In contrast to previous work,our data indicate that an isotopically light Zn reservoir(δ^(66/64)Zn down to0.49‰),of which the existence has previously been suggested based on mass balance considerations,may reside within the upper impact melt rock(UIM)unit.This observation is restricted to a few UIM samples only and cannot be extended to other target or impact melt rock units.Light isotopic signatures of moderately volatile elements in tektites and microtektites have previously been linked to(back-)condensation under distinct kinetic regimes.Although some of the signatures observed may have been partially overprinted during post-impact processes,our bulk data confirm impact volatilization and condensation of Zn,which may be even more pronounced at the microscale,with variable degrees of mixing between isotopically distinct reservoirs,not only at proximal to distal ejecta sites,but also within the lithologies associated with the Chicxulub impact crater.