A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several t...A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several techniques were adopted to enhance the impedance bandwidth and axial ratio bandwidth. The final design parameters were optimized by EM simulation. Finally, the L-strip fed six-element stacked microstrip antenna array was constructed and tested. Simulated and measured results show that in the whole INMARSAT work band, the VSWR of the antenna is less than 1.6, its antenna gain is higher than 15dB and wide-angle axial ratio (AR) 3dB is more than 21°. The antenna has been successfully used with a HNS 9201 terminal.展开更多
Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure,which provide a broad impedance bandwidth and meanwhile bring large sidelobes and backlobes. A novel uni-planar co...Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure,which provide a broad impedance bandwidth and meanwhile bring large sidelobes and backlobes. A novel uni-planar compact electromagnetic band-gap( EBG) structure is proposed, which shows excellent performance when applied to broadband stacked or aperture coupled microstrip array antennae. The test results indicate that,the directivity is effectively improved,and the front-to-back ratio is increased,and the thickness of the antenna is reduced. These improvements make this structure better used in airborne antennae.展开更多
A dual-band characteristic of stacked rectangular microstrip antenna is experimentally studied. It is a probe fed antenna for impedance matching with 50Ω coaxial cable. This antenna works well in the frequency range ...A dual-band characteristic of stacked rectangular microstrip antenna is experimentally studied. It is a probe fed antenna for impedance matching with 50Ω coaxial cable. This antenna works well in the frequency range (2.86 to 4.63 GHz). It is basically a low cost, light weight medium gain antenna, which is used for mobile communication. The variations of the length and width (1mm) of the stacked rectangular patch antenna have been done. And it is found dual resonance with increasing lower resonance frequency and almost constant upper resonance frequency with increases of the length & width of rectangular microstrip antenna. The input impedance and VSWR, return loss have been measured with the help of Network analyzer.展开更多
The design of a seven-band stacked patch antenna for the C, X and Ku band is presented. The antenna consists of an H-slot loaded fed patch, stacked with dual U-slot loaded rectangular patch to generate the seven frequ...The design of a seven-band stacked patch antenna for the C, X and Ku band is presented. The antenna consists of an H-slot loaded fed patch, stacked with dual U-slot loaded rectangular patch to generate the seven frequency bands. The total size of the antenna is 39.25 × 29.25 mm2. The multiband stacked patch antenna is studied and designed using IE3D simulator. For verification of simulation results, the antenna is analyzed by circuit theory concept. The simulated return loss, radiation pattern and gain are presented. Simulated results show that the antenna can be designed to cover the frequency bands from (4.24 GHz to 4.50 GHz, 5.02 GHz to 5.25 GHz) in C-band application, (7.84 GHz to 8.23 GHz) in X-band and (12.16 GHz to 12.35 GHz, 14.25 GHz to 14.76 GHz, 15.25 GHz to 15.51 GHz, 17.52 GHz to 17.86 GHz) in Ku band applications. The bandwidths of each band of the proposed antenna are 5.9%, 4.5%, 4.83%, 2.36%, 3.53%, 1.68% and 1.91%. Similarly the gains of the proposed band are 2.80 dBi, 4.39 dBi, 4.54 dBi, 10.26 dBi, 8.36 dBi and 9.91 dBi, respectively.展开更多
文摘A practical antenna has been designed and developed for INMARSAT mobile satellite communications. The design uses low cost materials such as foam and copper foil to create a stacked microstrip antenna array. Several techniques were adopted to enhance the impedance bandwidth and axial ratio bandwidth. The final design parameters were optimized by EM simulation. Finally, the L-strip fed six-element stacked microstrip antenna array was constructed and tested. Simulated and measured results show that in the whole INMARSAT work band, the VSWR of the antenna is less than 1.6, its antenna gain is higher than 15dB and wide-angle axial ratio (AR) 3dB is more than 21°. The antenna has been successfully used with a HNS 9201 terminal.
基金Sponsored by the Fujian Education Department(Grant No.JA13183)the Fujian Provincial Department of Science and Technology(Grant No.2013H0035)
文摘Most broadband microstrip antennae are implemented in the form of slot structure or laminate structure,which provide a broad impedance bandwidth and meanwhile bring large sidelobes and backlobes. A novel uni-planar compact electromagnetic band-gap( EBG) structure is proposed, which shows excellent performance when applied to broadband stacked or aperture coupled microstrip array antennae. The test results indicate that,the directivity is effectively improved,and the front-to-back ratio is increased,and the thickness of the antenna is reduced. These improvements make this structure better used in airborne antennae.
文摘A dual-band characteristic of stacked rectangular microstrip antenna is experimentally studied. It is a probe fed antenna for impedance matching with 50Ω coaxial cable. This antenna works well in the frequency range (2.86 to 4.63 GHz). It is basically a low cost, light weight medium gain antenna, which is used for mobile communication. The variations of the length and width (1mm) of the stacked rectangular patch antenna have been done. And it is found dual resonance with increasing lower resonance frequency and almost constant upper resonance frequency with increases of the length & width of rectangular microstrip antenna. The input impedance and VSWR, return loss have been measured with the help of Network analyzer.
文摘The design of a seven-band stacked patch antenna for the C, X and Ku band is presented. The antenna consists of an H-slot loaded fed patch, stacked with dual U-slot loaded rectangular patch to generate the seven frequency bands. The total size of the antenna is 39.25 × 29.25 mm2. The multiband stacked patch antenna is studied and designed using IE3D simulator. For verification of simulation results, the antenna is analyzed by circuit theory concept. The simulated return loss, radiation pattern and gain are presented. Simulated results show that the antenna can be designed to cover the frequency bands from (4.24 GHz to 4.50 GHz, 5.02 GHz to 5.25 GHz) in C-band application, (7.84 GHz to 8.23 GHz) in X-band and (12.16 GHz to 12.35 GHz, 14.25 GHz to 14.76 GHz, 15.25 GHz to 15.51 GHz, 17.52 GHz to 17.86 GHz) in Ku band applications. The bandwidths of each band of the proposed antenna are 5.9%, 4.5%, 4.83%, 2.36%, 3.53%, 1.68% and 1.91%. Similarly the gains of the proposed band are 2.80 dBi, 4.39 dBi, 4.54 dBi, 10.26 dBi, 8.36 dBi and 9.91 dBi, respectively.