期刊文献+
共找到729篇文章
< 1 2 37 >
每页显示 20 50 100
Predicting depression in patients with heart failure based on a stacking model
1
作者 Hui Jiang Rui Hu +1 位作者 Yu-Jie Wang Xiang Xie 《World Journal of Clinical Cases》 SCIE 2024年第21期4661-4672,共12页
BACKGROUND There is a lack of literature discussing the utilization of the stacking ensemble algorithm for predicting depression in patients with heart failure(HF).AIM To create a stacking model for predicting depress... BACKGROUND There is a lack of literature discussing the utilization of the stacking ensemble algorithm for predicting depression in patients with heart failure(HF).AIM To create a stacking model for predicting depression in patients with HF.METHODS This study analyzed data on 1084 HF patients from the National Health and Nutrition Examination Survey database spanning from 2005 to 2018.Through univariate analysis and the use of an artificial neural network algorithm,predictors significantly linked to depression were identified.These predictors were utilized to create a stacking model employing tree-based learners.The performances of both the individual models and the stacking model were assessed by using the test dataset.Furthermore,the SHapley additive exPlanations(SHAP)model was applied to interpret the stacking model.RESULTS The models included five predictors.Among these models,the stacking model demonstrated the highest performance,achieving an area under the curve of 0.77(95%CI:0.71-0.84),a sensitivity of 0.71,and a specificity of 0.68.The calibration curve supported the reliability of the models,and decision curve analysis confirmed their clinical value.The SHAP plot demonstrated that age had the most significant impact on the stacking model's output.CONCLUSION The stacking model demonstrated strong predictive performance.Clinicians can utilize this model to identify highrisk depression patients with HF,thus enabling early provision of psychological interventions. 展开更多
关键词 National health and nutrition examination survey DEPRESSION Heart failure stacking ensemble model Machine learning
下载PDF
基于Stacking融合模型的PHEV复合储能系统实时能量分配策略 被引量:1
2
作者 吴忠强 马博岩 《计量学报》 CSCD 北大核心 2024年第1期73-81,共9页
为了解决插电式混合动力汽车单一电池低比功率、无法响应暂态功率需求的问题,设计了电池和超级电容并联式复合储能系统。同时针对采用动态规划法优化负载电流分配时缺乏实时性的问题,利用不同驱动工况下动态规划优化的结果构成训练集进... 为了解决插电式混合动力汽车单一电池低比功率、无法响应暂态功率需求的问题,设计了电池和超级电容并联式复合储能系统。同时针对采用动态规划法优化负载电流分配时缺乏实时性的问题,利用不同驱动工况下动态规划优化的结果构成训练集进行训练,并综合GRU网络以及XGBoost算法,提出了一种Stacking集成学习框架下多模型融合的能量分配策略。仿真结果表明,与仅使用单一电池的储能系统相比,基于Stacking融合模型的实时能量分配系统在UDDS和US06两种循环工况下,电池峰值电流分别降低了48.7%和50.8%,有效削弱了电池的峰值电流,提升了电池的整体性能。 展开更多
关键词 电学计量 复合储能系统 插电式混合动力汽车 动态规划 XGBoost stacking融合模型
下载PDF
基于Stacking融合模型的Web攻击检测方法
3
作者 万巍 石鑫 +2 位作者 魏金侠 李畅 龙春 《信息安全学报》 CSCD 2024年第1期84-94,共11页
随着计算机技术与互联网技术的飞速发展,Web应用在人们的生产与生活中扮演着越来越重要的角色。但是在人们的日常生活与工作中带来了更多便捷的同时,却也带来了严重的安全隐患。在开发Web应用的过程中,大量不规范的新技术应用引入了很... 随着计算机技术与互联网技术的飞速发展,Web应用在人们的生产与生活中扮演着越来越重要的角色。但是在人们的日常生活与工作中带来了更多便捷的同时,却也带来了严重的安全隐患。在开发Web应用的过程中,大量不规范的新技术应用引入了很多的网站漏洞。攻击者可以利用Web应用开发过程中的漏洞发起攻击,当Web应用受到攻击时会造成严重的数据泄露和财产损失等安全问题,因此Web安全问题一直受到学术界和工业界的关注。超文本传输协议(HTTP)是一种在Web应用中广泛使用的应用层协议。随着HTTP协议的大量使用,在HTTP请求数据中包含了大量的实际入侵,针对HTTP请求数据进行Web攻击检测的研究也开始逐渐被研究人员所重视。本文提出了一种基于Stacking融合模型的Web攻击检测方法,针对每一条文本格式的HTTP请求数据,首先进行格式化处理得到既定的格式,结合使用Word2Vec方法和TextCNN模型将其转换成向量化表示形式;然后利用Stacking模型融合方法,将不同的子模型(使用配置不同尺寸过滤器的Text-CNN模型搭配不同的检测算法)进行融合搭建出Web攻击检测模型,与融合之前单独的子模型相比在准确率、召回率、F1值上都有所提升。本文所提出的Web攻击检测模型在公开数据集和真实环境数据上都取得了更加稳定的检测性能。 展开更多
关键词 入侵检测 stackING 融合模型 WEB攻击
下载PDF
基于FIR-Stacking的刀具磨损预测
4
作者 李备备 陈春晓 +1 位作者 郑飂默 张强 《组合机床与自动化加工技术》 北大核心 2024年第4期87-91,共5页
针对铣刀加工工件时传感器信号存在噪声、单一传统机器学习模型预测效果不理想的问题,提出一种基于自适应FIR滤波器和Stacking集成模型的刀具磨损预测方法。首先,采用自适应FIR滤波器去噪,计算时域、频域和时频域常用统计量作为信号特征... 针对铣刀加工工件时传感器信号存在噪声、单一传统机器学习模型预测效果不理想的问题,提出一种基于自适应FIR滤波器和Stacking集成模型的刀具磨损预测方法。首先,采用自适应FIR滤波器去噪,计算时域、频域和时频域常用统计量作为信号特征,并对同一信号的多源信号特征进行拼接,经Pearson相关系数筛选保留相关系数大于0.2的特征;最后,以LightGBM、支持向量回归(support vector regression,SVR)、多层感知机(multilayer perceptron,MLP)作为基模型,Lasso作为元模型,构建Stacking集成模型进行刀具磨损预测。使用铣削加工数据集进行验证,结果表明该方法可有效提高预测准确性。 展开更多
关键词 刀具磨损预测 FIR滤波器 stacking集成模型 机器学习
下载PDF
基于Stacking模型的学术论文多标签分类系统构建
5
作者 刘爱琴 郭少鹏 《国家图书馆学刊》 北大核心 2024年第2期96-104,共9页
学术论文高质量多标签自动分类是推动学术研究发展的关键程序之一。本研究利用Stacking模型将随机森林、支持向量机、极限树、极端梯度提升和神经网络五个分类器融合为一个异质集成分类器,并利用基于问题转换思想的多二分类模型将该分... 学术论文高质量多标签自动分类是推动学术研究发展的关键程序之一。本研究利用Stacking模型将随机森林、支持向量机、极限树、极端梯度提升和神经网络五个分类器融合为一个异质集成分类器,并利用基于问题转换思想的多二分类模型将该分类器应用于学术论文多标签分类。根据学术论文的特点,依次实现了与之配套的论文特征提取模块、TF-IDF加权模块、数据预处理模块,最终构建成一个面向学术论文的多标签分类系统。仿真实验验证了本研究构建的学术论文多标签分类系统在处理学术论文多标签分类问题时,较传统的单模型分类器或同质集成模型分类器在泛化能力、稳定性与准确率方面都有一定程度的提升。图9。参考文献21。 展开更多
关键词 论文分类 stacking模型 多标签分类 多二分类模型
下载PDF
近红外光谱结合Stacking集成学习的猕猴桃糖度检测研究
6
作者 郭志强 张博涛 曾云流 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第10期2932-2940,共9页
利用近红外光谱技术Stacking集成学习对猕猴桃糖度的无损检测。以湖北“云海一号”猕猴桃为研究对象,采用红外分析仪获取了280个样本的光谱数据,包含了4000~10000cm^(-1)范围内的1557个波长数据,使用折射仪测量糖度值。通过蒙特卡洛随... 利用近红外光谱技术Stacking集成学习对猕猴桃糖度的无损检测。以湖北“云海一号”猕猴桃为研究对象,采用红外分析仪获取了280个样本的光谱数据,包含了4000~10000cm^(-1)范围内的1557个波长数据,使用折射仪测量糖度值。通过蒙特卡洛随机采样结合T检验的奇异样本识别算法筛除异常值样本。利用SPXY算法按照4∶1的比例划分训练集和测试集。使用多元散射校正(MSC)、SG平滑滤波(SG)、趋势校正(DT)、矢量归一化(VN)、标准正态变换(SNV)五种方法对数据进行预处理。使用无信息变量消除法(UVE)、竞争性自适应重加权算法(CARS)和区间变量迭代空间收缩特征选择算法(iVISSA)提取特征波长,使用连续投影算法(SPA)进行二次提取,消除共线性变量。由于单一模型的泛化能力有限,为了扩大建模能力,设计了一种基于Stacking算法的集成学习模型。选择贝叶斯岭回归(BRR)、偏最小二乘回归(PLSR)、支持向量机回归(SVR)以及人工神经网络(ANN)作为基学习器,线性回归(LR)作为元学习器建立集成模型,比较不同组合下集成模型的性能。使用Pearson相关系数分析基学习器与集成模型之间的关系。结果表明:在五种预处理方法之中,矢量归一化的效果最佳。对预处理后的光谱进行特征波长提取,结果显示VN-CARS-PLSR模型效果最好,在测试集上的RP2为0.805,RMSEP为0.498。模型提取了177个特征波长,数据量相比于原始光谱减少了88.6%。通过Stacking算法对基学习器进行融合,对比不同的组合方式,发现PLS+SVR+ANN集成模型预测精度最高,RP2达到了0.853,RMSEP下降至0.433。通过Pearson相关系数分析了基学习器对集成模型性能的影响。研究表明,与单一模型相比,Stacking集成模型能够进行更加全面的建模,具有更高的泛化能力,该方法为猕猴桃糖度品质的无损检测提供了技术支持。 展开更多
关键词 猕猴桃 近红外光谱 糖度 stacking集成学习 模型融合
下载PDF
基于Stacking的套损预测方法研究
7
作者 赵建民 张珺博 崔佳鑫 《计算机与数字工程》 2024年第6期1685-1690,共6页
根据油气生产过程中的套管损坏影响因素众多、数据复杂等特点,通过数据预处理、随机森林重要性分析等技术对现场数据进行分析与整合,采用特征工程的方法处理缺失值并选取特征参数。针对传统机器学习模型对套损预测不佳的问题,提出采用双... 根据油气生产过程中的套管损坏影响因素众多、数据复杂等特点,通过数据预处理、随机森林重要性分析等技术对现场数据进行分析与整合,采用特征工程的方法处理缺失值并选取特征参数。针对传统机器学习模型对套损预测不佳的问题,提出采用双层Stacking模式集成学习预测模型;该模型采用随机森林、支持向量机、梯度提升决策树和K近邻算法为基模型,逻辑回归为元模型,以此构建泛化能力更强的套损预测模型。结果表明,该模型较于单一的机器学习模型准确率与F1值均有提升,该模型最终的准确率达到89.21%。 展开更多
关键词 集成学习 套管损耗 套损预测 stacking模型融合
下载PDF
基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型
8
作者 唐非 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期735-744,共10页
针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后... 针对风电场短期风速预测准确度不高的问题,提出一种基于互补集成经验模态分解和Stacking融合的短期风速组合预测模型。首先,为突出短期风速的局部特征并降低建模难度,通过互补集成经验模态分解算法将短期风速分解为若干个稳定分量。然后,利用信息熵和近似熵来判定各分量的复杂度,高复杂度分量选择最小二乘支持向量机、低复杂度分量选择随机配置网络作为对应的预测模型。利用Stacking算法对每个模型的预测值进行融合,使预测精度得到提升。最后,通过一组实际的短期风速数据作为研究对象,将提出的预测模型应用于其预测。对比结果表明,所提预测模型可提高短期风速的预测精度。 展开更多
关键词 风能 短期风速 组合预测 互补集成经验模态分解 多模型 stacking融合
下载PDF
基于Stacking模型融合的AOD终点碳温预测
9
作者 刘东旭 李明明 +1 位作者 邵磊 邹宗树 《炼钢》 CAS 北大核心 2024年第4期30-39,共10页
为提高AOD不锈钢冶炼终点碳温预测的准确性和可靠性,提出一种基于多个机器学习算法(RF、XGBoost、AdaBoost、KNN、SVR和岭回归)嵌入的Stacking模型融合的AOD终点碳温预测方法。基于理论基础和相关性分析确定了模型的输入特征变量,利用... 为提高AOD不锈钢冶炼终点碳温预测的准确性和可靠性,提出一种基于多个机器学习算法(RF、XGBoost、AdaBoost、KNN、SVR和岭回归)嵌入的Stacking模型融合的AOD终点碳温预测方法。基于理论基础和相关性分析确定了模型的输入特征变量,利用箱线图法对历史数据进行预处理,结合5折交叉验证和贝叶斯优化算法确定了模型的最优参数,通过对上述6种机器学习算法的逐层筛选,构建了RF+XGBoost+KNN—RF二层Stacking多模型融合的终点碳含量预测模型、RF+AdaBoost+KNN—RF+XGBoost+KNN—XGBoost三层Stacking多模型融合的终点温度预测模型。预测结果表明,RF+XGBoost+KNN—RF二层Stacking模型在终点碳质量分数误差为±0.01%的命中率为87.86%,RF+AdaBoost+KNN—RF+XGBoost+KNN—XGBoost三层Stacking模型在终点温度误差为±15℃的命中率为94.22%,相较于单一的机器学习模型,预测精度显著提高。 展开更多
关键词 AOD 终点碳温预测 模型融合 stacking模型
下载PDF
Intrusion Detection Using Ensemble Wrapper Filter Based Feature Selection with Stacking Model
10
作者 D.Karthikeyan V.Mohan Raj +1 位作者 J.Senthilkumar Y.Suresh 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期645-659,共15页
The number of attacks is growing tremendously in tandem with the growth of internet technologies.As a result,protecting the private data from prying eyes has become a critical and tough undertaking.Many intrusion dete... The number of attacks is growing tremendously in tandem with the growth of internet technologies.As a result,protecting the private data from prying eyes has become a critical and tough undertaking.Many intrusion detection solutions have been offered by researchers in order to decrease the effect of these attacks.For attack detection,the prior system has created an SMSRPF(Stacking Model Significant Rule Power Factor)classifier.To provide creative instance detection,the SMSRPF combines the detection of trained classifiers such as DT(Decision Tree)and RF(Random Forest).Nevertheless,it does not generate any accuratefindings that are adequate.The suggested system has built an EWF(Ensemble Wrapper Filter)feature selection with SMSRPF classifier for attack detection so as to overcome this problem.The UNSW-NB15 dataset is used as an input in this proposed research project.Specifically,min–max normalization approach is used to pre-process the incoming data.The feature selection is then carried out using EWF.Based on the selected features,SMSRPF classifiers are utilized to detect the attacks.The SMSRPF is integrated with the trained classi-fiers such as DT and RF to create creative instance detection.After that,the testing data is classified using MCAR(Multi-Class Classification based on Association Rules).The SRPF judges the rules correctly even when the confidence and the lift measures fail.Regarding accuracy,precision,recall,f-measure,computation time,and error,the experimental findings suggest that the new system outperforms the prior systems. 展开更多
关键词 Intrusion detection system(IDS) ensemble wrapperfilter(EWF) stacking model with significant rule power factor(SMSRPF) classifier
下载PDF
基于Stacking集成学习的机械钻速预测方法
11
作者 高云伟 罗利民 +3 位作者 薛凤龙 刘洋 严昊 郑双进 《石油机械》 北大核心 2024年第5期17-24,52,共9页
机械钻速是评估石油天然气钻井作业效率的重要指标。为准确预测新疆工区某油田钻井机械钻速,基于该工区的历史钻井数据,利用局部离群因子检测算法对数据进行预处理,建立了基于Stacking集成学习的机械钻速预测模型,该模型通过Stacking集... 机械钻速是评估石油天然气钻井作业效率的重要指标。为准确预测新疆工区某油田钻井机械钻速,基于该工区的历史钻井数据,利用局部离群因子检测算法对数据进行预处理,建立了基于Stacking集成学习的机械钻速预测模型,该模型通过Stacking集成策略融合K近邻算法(KNN)、支持向量机算法(SVM)和随机森林算法(RF)进行预测验证。预测验证结果显示,分类准确度不高。运用遗传算法进行各基础模型参数优化。优化后,基于KNN、SVM、RF及Stacking集成4种算法,预测机械钻速准确率分别为73.7%、78.9%、81.6%及97.4%,其中Stacking集成模型预测准确率最高。基于Stacking集成学习的机械钻速预测方法开发了机械钻速预测软件,运用软件预测其他2套施工参数下的机械钻速,结果表明,预测机械钻速与实际机械钻速一致,且性能稳定,表明该模型拥有较强的泛化性和较高的预测精度。该智能算法可为新疆工区的该油田机械钻速预测与钻井施工参数优化提供一种新手段。 展开更多
关键词 机械钻速 预测模型 stacking集成学习 机器学习 施工参数优化 预测验证
下载PDF
基于Stacking集成学习的剩余使用寿命预测
12
作者 韩腾飞 李亚平 《计算机集成制造系统》 EI CSCD 北大核心 2024年第7期2464-2473,共10页
剩余使用寿命(RUL)预测对于设备维护策略的制定有着关键作用。面对可变环境和多样的操作条件,单一寿命预测模型的性能波动较大,泛化能力弱。针对这一问题,提出一种融合多个相异模型的Stacking集成模型,纠正单一模型的预测误差。首先,对... 剩余使用寿命(RUL)预测对于设备维护策略的制定有着关键作用。面对可变环境和多样的操作条件,单一寿命预测模型的性能波动较大,泛化能力弱。针对这一问题,提出一种融合多个相异模型的Stacking集成模型,纠正单一模型的预测误差。首先,对状态监测数据进行滑动时间窗口处理,获得具有时间序列信息的性能退化数据;然后,以提高模型的准确性和多样性为目标,确定基学习器的种类;最后,将梯度提升决策树(GBDT)作为元学习器,整合基学习器的预测结果,输出最终结果。基于NASA C-MAPSS数据集,对提出的集成模型进行验证,结果表明:Stacking集成模型的预测精度显著高于基学习器,与其他传统预测模型相比,也具有明显优势。 展开更多
关键词 stacking集成模型 剩余寿命预测 滑动时间窗口 集成学习
下载PDF
坝基灌浆量预测ISSA-Stacking集成学习代理模型研究
13
作者 祝玉珊 王晓玲 +3 位作者 崔博 陈文龙 轩昕祺 余红玲 《天津大学学报(自然科学与工程技术版)》 EI CAS CSCD 北大核心 2024年第2期174-185,共12页
灌浆量预测对坝基灌浆施工具有重要意义.由于灌浆工程隐蔽且复杂,传统方法难以实现准确高效的灌浆量预测.代理模型是一种能够建立影响因素与响应值之间近似关系的快速求解方法,然而单一代理模型的预测稳定性和准确性较低,组合代理模型... 灌浆量预测对坝基灌浆施工具有重要意义.由于灌浆工程隐蔽且复杂,传统方法难以实现准确高效的灌浆量预测.代理模型是一种能够建立影响因素与响应值之间近似关系的快速求解方法,然而单一代理模型的预测稳定性和准确性较低,组合代理模型仅将单一模型结果进行加权平均,预测精度仍有待提高.为解决上述问题,本文提出一种ISSA-Stacking集成学习代理模型新方法用于灌浆量预测研究.首先,针对灌浆量预测具有数据量小、影响因素与灌浆量之间非线性关系复杂且预测不确定性较大等特性,基于Stacking集成学习策略,选取在小样本预测中表现优越的支持向量回归(SVR)、具有良好非线性拟合能力的BP神经网络(BPNN)和预测泛化性能及稳定性高的随机森林(RF)等算法作为基学习器,采用自适应学习和不确定性处理能力强的自适应神经模糊推理系统(ANFIS)作为元学习器以集成上述机器学习算法的优势,构建具有更优预测性能和泛化能力的Stacking集成学习方法作为代理模型;其次,为进一步提高模型预测精度,采用混沌理论和Lévy飞行策略改进的麻雀搜索算法(ISSA)对集成学习代理模型进行参数同步优化;最后,将所提ISSA-Stacking集成学习代理模型应用于某实际灌浆工程的灌浆量预测并与其他方法进行对比分析.结果表明,所提方法具有较高的预测精度,绝对平均误差仅为0.21 m^(3);与组合代理模型及单一代理模型(SVR、BPNN和RF)相比,平均精度分别提高24.34%、30.84%、32.68%和26.56%,为灌浆量预测提供了一种新思路. 展开更多
关键词 灌浆量预测 stacking集成学习方法 代理模型 麻雀搜索算法
下载PDF
Stacking集成学习应用于近视矫正中的角膜塑形镜临床验配
14
作者 巩家铭 李康妹 +3 位作者 胡俊 陈浩 曹倩倩 吴戈 《Journal of Donghua University(English Edition)》 CAS 2024年第2期184-194,共11页
针对角膜塑形(orthokeratology,OK)镜临床验配难度系数大和过程繁琐费力的问题,提出一种stacking集成学习方法预测OK镜参数值,实现OK镜智能验配。通过基于F检验的特征衍生和基于方差-改进Boruta算法的特征选择,构建出最适合目标变量的... 针对角膜塑形(orthokeratology,OK)镜临床验配难度系数大和过程繁琐费力的问题,提出一种stacking集成学习方法预测OK镜参数值,实现OK镜智能验配。通过基于F检验的特征衍生和基于方差-改进Boruta算法的特征选择,构建出最适合目标变量的特征集合。研究了以随机森林(random forest,RF)、梯度提升决策树(gradient boosting decision tree,GBDT)和支持向量回归(support vector regression,SVR)作为第一层基学习器,线性回归(linear regression,LR)作为第二层元学习器的stacking集成学习预测模型。实验结果表明模型预测结果和临床诊断结果高度一致,验证该模型可作为一种有效的辅助临床验配方法。 展开更多
关键词 角膜塑形(OK)镜 特征工程 stacking集成模型 参数预测 智能验配
下载PDF
基于RF-RFECV和Stacking集成学习的脑卒中预测研究
15
作者 张晓飞 宋其江 《智能计算机与应用》 2024年第5期252-256,共5页
脑卒中具有发病率高、死亡率高和致残率高的特点,提早发现和治疗显得至关重要。在脑卒中预测方法中,机器学习相对于其他方法具有更好的表现。针对传统的单一机器学习模型在预测的精度或稳定性上都存在局限性的问题,提出了一种基于RF-RF... 脑卒中具有发病率高、死亡率高和致残率高的特点,提早发现和治疗显得至关重要。在脑卒中预测方法中,机器学习相对于其他方法具有更好的表现。针对传统的单一机器学习模型在预测的精度或稳定性上都存在局限性的问题,提出了一种基于RF-RFECV和Stacking集成学习的脑卒中预测方法。通过实验证明,该方法可以有效地降低特征维度,获得最优特征子集,与其他的单一模型以及其他集成算法模型相比,Stacking模型的预测精度明显提升,可以更有效地预测脑卒中。 展开更多
关键词 SMOTE算法 RF-RFECV stacking模型 脑卒中 机器学习
下载PDF
基于Null Importance和Stacking模型的知识追踪研究
16
作者 梁开迪 张丽华 《中国科技论文在线精品论文》 2024年第2期174-182,共9页
为应对基于游戏的学习平台在知识追踪应用方面的不足,本研究利用Field Day Lab提供的教育游戏用户日志进行深入分析。采用方差法和Null Importance方法对数据集进行降维处理,并结合K折交叉验证与LightGBM算法,建立了一个高效的预测模型... 为应对基于游戏的学习平台在知识追踪应用方面的不足,本研究利用Field Day Lab提供的教育游戏用户日志进行深入分析。采用方差法和Null Importance方法对数据集进行降维处理,并结合K折交叉验证与LightGBM算法,建立了一个高效的预测模型。此外,通过集成Logistic模型,构建起Stacking模型。研究表明,该模型在验证集上的Macro-F1值显著提升至0.699,同时也在测试集上显示出优异的泛化能力。本研究为教育游戏领域的知识追踪提供了创新方法,并为游戏开发与教育实践提供了宝贵参考,支持教育游戏的开发者为学生创造更有效的学习体验。 展开更多
关键词 人工智能 知识追踪 Null Importance stacking集成模型
下载PDF
基于Stacking集成学习的机场线短时客流预测研究
17
作者 杨安安 韩星玉 +2 位作者 田旷 刘泽远 明玮 《山东科学》 CAS 2024年第4期112-120,共9页
地铁机场线客流具有高度时变性,受机场航班影响使得精准的短时客流预测具有挑战性。综合考虑机场航班信息和机场线路历史客流,构建了一种以随机森林(RF)、LightGBM(light gradient boosting machine)、梯度提升决策树(GBDT)和逻辑回归... 地铁机场线客流具有高度时变性,受机场航班影响使得精准的短时客流预测具有挑战性。综合考虑机场航班信息和机场线路历史客流,构建了一种以随机森林(RF)、LightGBM(light gradient boosting machine)、梯度提升决策树(GBDT)和逻辑回归算法作为集成学习器,基于叠加(Stacking)集成模型的机场线路短时客流预测模型。以北京地铁大兴机场线为实例进行验证,并与Informer和长短时记忆神经网络(long short-term memory,LSTM)两种基线模型进行对比。结果表明,考虑航班信息和机场线历史客流的双通道预测效果明显优于仅考虑机场线历史客流的单通道预测;Stacking模型在各项指标中均表现出优越的性能,其中,在96步长(24 h)下的预测效果最好,预测进站客流的平均绝对误差为7.66,预测出站客流的平均绝对误差为4.67;分析航班信息特征对预测模型的影响,发现离港航班信息重要性不如到港航班,这与离港旅客提前到达机场时间差异较大有关。 展开更多
关键词 机场线 短时客流预测 stacking集成模型 航班信息
下载PDF
基于Stacking集成模型的煤层瓦斯含量预测研究 被引量:1
18
作者 王琳 周捷 +2 位作者 林海飞 李文静 张宇少 《煤炭工程》 北大核心 2024年第4期125-132,共8页
煤层瓦斯含量精准预测是预防井下瓦斯灾害事故的重要环节,为提高井下瓦斯含量预测的科学性及准确性,获取不同矿区的41组数据,包括瓦斯含量、埋深、煤厚、水分、灰分以及挥发分。对最小二乘支持向量机(LSSVM)、深度信念网络(DBN)、长短... 煤层瓦斯含量精准预测是预防井下瓦斯灾害事故的重要环节,为提高井下瓦斯含量预测的科学性及准确性,获取不同矿区的41组数据,包括瓦斯含量、埋深、煤厚、水分、灰分以及挥发分。对最小二乘支持向量机(LSSVM)、深度信念网络(DBN)、长短期记忆(LSTM)、Elman神经网络及自适应增强(Adaboost)五种算法进行初选,得到最优基模型为最小支持二乘向量机、自适应增强以及深度信念网络。通过基模型集成得到7种瓦斯含量预测模型,得到Stacking-LSSVM-Adaboost、Adaboost、Stacking-Adaboost-DBN和Stacking-LSSVM-Adaboost-DBN四种模型为优选模型。采用判定系数、平均绝对误差、均方根误差以及平均绝对百分比误差四种预测评价指标对优选出的四种模型进行综合评估,选择MAE<0.2、RMSE<0.3且MAPE<10的模型作为最终瓦斯含量预测模型。结果表明,Stacking-LSSVM-Adaboost-DBN集成模型判定系数为0.951,MAE、RMSE和MAPE分别为0.170、0.204及7.412,所建立模型拥有较高预测精度,可为矿井瓦斯灾害防治提供一定依据。 展开更多
关键词 瓦斯含量预测 stacking集成 五折交叉验证 模型优选 模型评价
下载PDF
基于Bayesian-Stacking模型的电影票房预测
19
作者 李小红 韩淑淑 《中国科技论文在线精品论文》 2024年第2期294-301,共8页
本文构建了一种基于XGBoost的特征选取方法以及Bayesian-Stacking集成算法的票房预测模型。首先,构建XGBoost的影响力测量模型进行变量筛选,能够简化后期模型的输入和提高模型特征变量的可解释性;其次,分别构建了BP神经网络、XGBoost、L... 本文构建了一种基于XGBoost的特征选取方法以及Bayesian-Stacking集成算法的票房预测模型。首先,构建XGBoost的影响力测量模型进行变量筛选,能够简化后期模型的输入和提高模型特征变量的可解释性;其次,分别构建了BP神经网络、XGBoost、Logistic Regression、LightGBM、GBDT以及Stacking模型,再利用贝叶斯优化算法实现上述模型超参数全局寻优后,对电影票房进行预测;最后,引入评价指标进行分析。结果表明:1)将贝叶斯优化算法与模型相结合,获得了相对于原模型更高的预测精度;2)Bayesian-Stacking模型的电影票房预测精度均优于其他模型。Bayesian-Stacking模型在电影上映期间预测最终票房具有较高的参考价值,可为有关部门提供决策参考。 展开更多
关键词 应用统计数学 电影票房预测 stacking模型 XGBoost 贝叶斯算法
下载PDF
基于气象因素的Stacking回归模型的短期负荷预测方法
20
作者 王洋 李江 +2 位作者 张婧 格日乐图 刘秀丽 《电工技术》 2024年第17期67-70,共4页
为了有效提高短期负荷预测精度,针对负荷数据时序性和非线性的特点,提出了一种基于气象因素的Stacking回归模型的短期负荷预测方法。以某地区的历史日最大负荷数据、气象数据作为实验训练样本,对多种模型采用多种可行思路进行日滚动预... 为了有效提高短期负荷预测精度,针对负荷数据时序性和非线性的特点,提出了一种基于气象因素的Stacking回归模型的短期负荷预测方法。以某地区的历史日最大负荷数据、气象数据作为实验训练样本,对多种模型采用多种可行思路进行日滚动预测。经过对比分析,选择基于气象因素的Stacking回归模型作为主要预测算法,并结合相似日调整作为主要协调算法。实验结果表明,所提出的预测方法相比ARIMA模型方法、多元回归模型方法和自回归模型方法具有更高、更稳定的预测精度。 展开更多
关键词 短期负荷预测 stacking回归模型 气象因素 协调算法
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部