This paper focuses on facilitating state-of-the-art applications of big data analytics(BDA) architectures and infrastructures to telecommunications(telecom) industrial sector.Telecom companies are dealing with terabyt...This paper focuses on facilitating state-of-the-art applications of big data analytics(BDA) architectures and infrastructures to telecommunications(telecom) industrial sector.Telecom companies are dealing with terabytes to petabytes of data on a daily basis. Io T applications in telecom are further contributing to this data deluge. Recent advances in BDA have exposed new opportunities to get actionable insights from telecom big data. These benefits and the fast-changing BDA technology landscape make it important to investigate existing BDA applications to telecom sector. For this, we initially determine published research on BDA applications to telecom through a systematic literature review through which we filter 38 articles and categorize them in frameworks, use cases, literature reviews, white papers and experimental validations. We also discuss the benefits and challenges mentioned in these articles. We find that experiments are all proof of concepts(POC) on a severely limited BDA technology stack(as compared to the available technology stack), i.e.,we did not find any work focusing on full-fledged BDA implementation in an operational telecom environment. To facilitate these applications at research-level, we propose a state-of-the-art lambda architecture for BDA pipeline implementation(called Lambda Tel) based completely on open source BDA technologies and the standard Python language, along with relevant guidelines.We discovered only one research paper which presented a relatively-limited lambda architecture using the proprietary AWS cloud infrastructure. We believe Lambda Tel presents a clear roadmap for telecom industry practitioners to implement and enhance BDA applications in their enterprises.展开更多
A nanocrystalline layer was synthesized on the surface of TWIP steel samples by surface mechanical attri- tion treatment (SMAT) under varying durations. Microhardness variation was examined along the depth of the de...A nanocrystalline layer was synthesized on the surface of TWIP steel samples by surface mechanical attri- tion treatment (SMAT) under varying durations. Microhardness variation was examined along the depth of the de- formation layer. Microstructural characteristics of the surface at the TWIP steel SMATed for 90 min were observed and analyzed by optical microscope, x-ray diffraction, transmission and high-resolution electron microscope. The re- sults show that the orientation of austenite grains weakens, and a-martensite transformation occurs during SMAT. During the process of SMAT, the deformation twins generate and divide the austenite grains firstly~ then a-martens- ite transformation occurs beside and between the twin bundles~ after that the martensite and austenite grains rotate to accommodate deformation, and the orientations of martensite and between martensite and residual austenite increase; lastly the randomly oriented and uniform-sized nanocrystallir^e layers are formed under continuous deformation.展开更多
基金supported in part by the Big Data Analytics Laboratory(BDALAB)at the Institute of Business Administration under the research grant approved by the Higher Education Commission of Pakistan(www.hec.gov.pk)the Darbi company(www.darbi.io)
文摘This paper focuses on facilitating state-of-the-art applications of big data analytics(BDA) architectures and infrastructures to telecommunications(telecom) industrial sector.Telecom companies are dealing with terabytes to petabytes of data on a daily basis. Io T applications in telecom are further contributing to this data deluge. Recent advances in BDA have exposed new opportunities to get actionable insights from telecom big data. These benefits and the fast-changing BDA technology landscape make it important to investigate existing BDA applications to telecom sector. For this, we initially determine published research on BDA applications to telecom through a systematic literature review through which we filter 38 articles and categorize them in frameworks, use cases, literature reviews, white papers and experimental validations. We also discuss the benefits and challenges mentioned in these articles. We find that experiments are all proof of concepts(POC) on a severely limited BDA technology stack(as compared to the available technology stack), i.e.,we did not find any work focusing on full-fledged BDA implementation in an operational telecom environment. To facilitate these applications at research-level, we propose a state-of-the-art lambda architecture for BDA pipeline implementation(called Lambda Tel) based completely on open source BDA technologies and the standard Python language, along with relevant guidelines.We discovered only one research paper which presented a relatively-limited lambda architecture using the proprietary AWS cloud infrastructure. We believe Lambda Tel presents a clear roadmap for telecom industry practitioners to implement and enhance BDA applications in their enterprises.
基金Sponsored by National Natural Science Foundation of China(51044007,51001079)Scientific Research Plan of Shanxi Province of China(20090321072)National High-Tech Research and Development Program(863Program)of China(2007AA03Z555)
文摘A nanocrystalline layer was synthesized on the surface of TWIP steel samples by surface mechanical attri- tion treatment (SMAT) under varying durations. Microhardness variation was examined along the depth of the de- formation layer. Microstructural characteristics of the surface at the TWIP steel SMATed for 90 min were observed and analyzed by optical microscope, x-ray diffraction, transmission and high-resolution electron microscope. The re- sults show that the orientation of austenite grains weakens, and a-martensite transformation occurs during SMAT. During the process of SMAT, the deformation twins generate and divide the austenite grains firstly~ then a-martens- ite transformation occurs beside and between the twin bundles~ after that the martensite and austenite grains rotate to accommodate deformation, and the orientations of martensite and between martensite and residual austenite increase; lastly the randomly oriented and uniform-sized nanocrystallir^e layers are formed under continuous deformation.