The Lenzing Group, world market leader in cellulose fibers, will continue to expand production capacity in 2010 by investing a scheduled EUR 120 million in its European and Asian sites.The projects will be realized ov...The Lenzing Group, world market leader in cellulose fibers, will continue to expand production capacity in 2010 by investing a scheduled EUR 120 million in its European and Asian sites.The projects will be realized over the next two years. The key elements are the展开更多
This paper considers a capacity expansion problem with budget constraint. Suppose each edge in the network has two attributes: capacity and the degree of difficulty. The difficulty degree of a tree T is the maximum. d...This paper considers a capacity expansion problem with budget constraint. Suppose each edge in the network has two attributes: capacity and the degree of difficulty. The difficulty degree of a tree T is the maximum. degree of difficulty of all edges in the tree and the cost for coping with the difficulty in a tree is a nondecreasing function about the difficulty degree of the tree. The authors need to increase capacities of some edges so that there is a spanning tree whose capacity can be increased to the maximum extent, meanwhile the total cost for increasing capacity as well as overcoming the difficulty in the spanning tree does not exceed a given budget D*. Suppose the cost for increasing capacity on each edge is a linear function about the increment of capacity, they transform this problem into solving some hybrid parametric spanning tree problems([1]) and propose a strongly polynomial algorithm.展开更多
This study developed a systematic decision-making process for water supply capacity expansion using the analytic hierarchy process. The decision-making criteria were categorized into environmental, economic, technical...This study developed a systematic decision-making process for water supply capacity expansion using the analytic hierarchy process. The decision-making criteria were categorized into environmental, economic, technical and socio-cultural aspects. Capacity expansion of three water resources (Kpong, Weija and Teshie plants) of Accra-Tema Metropolitan Area (Ghana) was studied as a test case. The research resulted in the environmental criterion with the highest priority weight (52.4%), followed by the economic (30.6%), technical (11.3%) and socio-cultural criteria (5.8%). The overall analysis ranked the Kpong plant with a score of 36.1% followed by the Weija and Teshie plants with scores 33.8% and 30.2%, respectively.展开更多
The demand for nuclear fuel for research reactors is rising worldwide. Thus, the production facilities of this kind of fuel need reliable guidance on how to augment their production in order to meet the increasing dem...The demand for nuclear fuel for research reactors is rising worldwide. Thus, the production facilities of this kind of fuel need reliable guidance on how to augment their production in order to meet the increasing demand efficiently and safely. We proposed a specific procedure for increasing production capacity. That procedure was tested with data from a real plant, which produces plate-type fuel elements loaded with LEU U3Si2-Al fuel. The test was made by means of discrete event simulation, and the results indicated the proposed procedure is efficient in raising production capacity.展开更多
The minimum cost of capacity expansion for time-limited transportation problem on-demand (MCCETLTPD) is to find such a practicable capacity expansion transportation scheme satisfying the time-limited T along with all ...The minimum cost of capacity expansion for time-limited transportation problem on-demand (MCCETLTPD) is to find such a practicable capacity expansion transportation scheme satisfying the time-limited T along with all origins’ supply and all destinations’ demands as well as the expanding cost is minimum. Actually, MCCETLTPD is a balance transportation problem and a variant problem of minimum cost maximum flow problem. In this paper, by creating a mathematical model and constructing a network with lower and upper arc capacities, MCCETLTPD is transformed into searching feasible flow in the constructed network, and consequently, an algorithm MCCETLTPD-A is developed as MCCETLTPD’s solution method basing minimum cost maximum flow algorithm. Computational study validates that the MCCETLTPD-A algorithm is an efficient approach to solving the MCCETLTPD.展开更多
The dominant phase ZrV2O7 material, doped with zirconia and vanadium (V) oxide, was synthesized by solid state reaction and sol-gel methods. X-ray power diffraction patterns show that it is cubic structure. Thermal me...The dominant phase ZrV2O7 material, doped with zirconia and vanadium (V) oxide, was synthesized by solid state reaction and sol-gel methods. X-ray power diffraction patterns show that it is cubic structure. Thermal mechanic analysis measurements exhibit a zero-thermal expansion of this material above 150 degreesC. Meanwhile, the heat capacity dependent on temperature, determined by differential scanning calorimetry, keeps in constant almost in the same temperature range. The relationship between unusual thermal expansion and abnormal heat capacity is discussed with Gruneisen parameter.展开更多
Damaturu, the Yobe State Capital is one of the major towns in the semi-arid areas OfNortheastern Nigeria. It lacks adequate water supply. Being a State Capital, rapid improvements in itsinfrastructures including wate...Damaturu, the Yobe State Capital is one of the major towns in the semi-arid areas OfNortheastern Nigeria. It lacks adequate water supply. Being a State Capital, rapid improvements in itsinfrastructures including water supply to cope with increased demands are required. Three options forthe expansion of the present water supply system are been considered. These are Groundwater resourceswithin and around the existing system, and surface water schemes from two Dam sites identitied andappraised for this purpose. The Management of the Yobe State Water Board and the State Governmentare faced with the problem of which of these three options to choose. This is a typical capacity expansionproblem within a multicriterion setting in which the choice is to be bassed on economic, environmental,social as well as political considerstions. This paper presents a multicriterion analysis whose result willbe used in forming the basis of an informed decision to be made on why a particular option is to bechosen.展开更多
This paper investigates the possibility of using the free expansion of gaseous CO2 in portable air-cooling systems. The cooling capacity of the gaseous CO2 free jet expansion was calculated using three different appro...This paper investigates the possibility of using the free expansion of gaseous CO2 in portable air-cooling systems. The cooling capacity of the gaseous CO2 free jet expansion was calculated using three different approaches and the results showed that the simplified calculations would give approximated cooling values with an 11.6% maximum error. The mass flow rate, upstream pressure and cooling capacity of the gaseous CO2 decreased with time. A maximum 48.5 watts of cooling was recorded at minute 4 and a minimum value of 10.4 watts at the end of the test. The drop in cooling capacity is due to the evaporation of the liquid CO2 inside the small cylinder which cools the two-phase CO2 mixture and causes a pressure drop (from 6 MPa to 2.97 MPa), which also affects the mass flow rate of gaseous CO2 exiting the orifice (from 0.56 g/s to 0.24 g/s). If this cooling technique is to be considered in portable compact-cooling systems, the mass, pressure and cooling capacity drop with time must be solved. One of the solutions could be to cover the cylinder with a heating coat to compensate for the heat absorbed by the evaporation of the liquid CO2.展开更多
Thermal storage potential and thermal expansion are characteristic properties for extreme applications. ZrB2 is a candidate for advanced applications in aircraft and fusion reactors. This article presents density func...Thermal storage potential and thermal expansion are characteristic properties for extreme applications. ZrB2 is a candidate for advanced applications in aircraft and fusion reactors. This article presents density functional theory calculations of its states, microstructure and quasi-harmonic levels calculations of thermophysical properties. Band structure highlighted dynamical instability with metallic impurities in ZrB2 structure based on frequency modes. The observed projected density of states (PDOS) appropriate 4d orbital of Zr dominated at low frequency both in perfect crystal in the presence or absence of covalent impurities while B 2s and 2p orbitals dominate higher frequency states. Temperature dependency and anisotropy of coefficient of thermal expansion (CTE) were evaluated with various impurities. Various thermodynamic properties like entropy and free energy were explored for degrees of freedom resulting from internal energy changes in the material. Computed results for heat capacity and CTE were compared to available numerical and experimental data.展开更多
Split sleeve cold expansion(SSCX)can efiectively enhance fatigue life of holes by improving the field of residual stress.Numerical simulations were conducted to investigate the parameter influence mechanism and obtain...Split sleeve cold expansion(SSCX)can efiectively enhance fatigue life of holes by improving the field of residual stress.Numerical simulations were conducted to investigate the parameter influence mechanism and obtain higher compressive residual stress(CRS).Expansion method,degree of cold expansion(DCE),friction coefficient between laminations and depth-diameter ratio were analyzed.For Ti-Al stacked joint holes,two expansion methods are proposed,namely aluminum alloy first followed titanium alloy(Al first)and titanium alloy first followed aluminum alloy(Ti first).The results show that expansion method and DCE have significant efiects on the field of circumferential residual stress,and the friction has a negligible influence.A higher value of CRS and a wider layer of plastic deformation are induced with Ti first.Optimal DCE of TiAl stacked structure is 5.2%-5.6%.As the depth-diameter ratio is in the range of 0.5-1.25,a positive linear correlation between the maximum compressive residual stress(CRS_(max))and depth-diameter ratio is shown.展开更多
Yulong Copper Co.,Ltd.,affiliated to West Mining Group,received the Mining License of the P.R.C.issued by Ministry of Land and Resources on July 17,2018,which approved a new capacity of 19.89 million t/a.According to ...Yulong Copper Co.,Ltd.,affiliated to West Mining Group,received the Mining License of the P.R.C.issued by Ministry of Land and Resources on July 17,2018,which approved a new capacity of 19.89 million t/a.According to report。展开更多
大规模开发和利用风能有利于实现电力系统清洁低碳转型,是实现国家“碳达峰、碳中和”战略目标的重要技术手段,但风电出力的强不确定性对电力系统区域间可用输电能力(available transfer capability,ATC)评估带来了全新的挑战,传统用于...大规模开发和利用风能有利于实现电力系统清洁低碳转型,是实现国家“碳达峰、碳中和”战略目标的重要技术手段,但风电出力的强不确定性对电力系统区域间可用输电能力(available transfer capability,ATC)评估带来了全新的挑战,传统用于求解计及风电出力不确定性的概率ATC评估模型在计算效率和计算精度方面均存在一定的不足。为此,该文提出一种基于多项式混沌展开(polynomialchaos expansion,PCE)的电力系统概率ATC评估方法,该方法首先构建基于机会约束的电力系统概率ATC评估模型;然后,根据风电出力预测误差的概率分布特征,选择对应的正交多项式为基函数以近似风电出力预测误差及电力网络中与之相关联的其他随机变量;进一步,借助Galerkin投影和基于一阶矩、二阶矩的机会约束转化方法,将所构建的机会约束模型的概率约束转化为确定性约束,实现基于机会约束的概率ATC评估模型向易于求解的确定性优化模型的转化;进而,将概率ATC评估模型的求解问题转化为ATC的最优多项式逼近系数的求解问题,根据求得的最优多项式逼近系数和选取的基函数计算电力系统ATC的概率分布特征;最后,通过修改后的PJM-5节点测试系统、IEEE-118节点测试系统及吉林西部电网实际算例验证了所提基于多项式混沌展开的电力系统概率ATC评估方法的准确性和有效性。展开更多
Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclic...Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage(UGS)rebuilt from water-invaded gas reservoirs.Through analysis of the gas-liquid contact stabilization mechanism,flow and occurrence,the optimal control method for lifecycle efficient operation of UGS was explored.The results show that in the initial construction stage of UGS,the action of gravity should be fully utilized by regulating the gas injection rate,so as to ensure the macroscopically stable migration of the gas-liquid contact,and greatly improve the gas sweeping capacity,providing a large pore space for gas storage in the subsequent cyclical injection-production stage.In the cyclical injection-production stage of UGS,a constant gas storage and production rate leads to a low pore space utilization.Gradually increasing the gas storage and production rate,that is,transitioning from small volume to large volume,can continuously break the hydraulic equilibrium of the remaining fluid in the porous media,which then expands the pore space and flow channels.This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee.展开更多
文摘The Lenzing Group, world market leader in cellulose fibers, will continue to expand production capacity in 2010 by investing a scheduled EUR 120 million in its European and Asian sites.The projects will be realized over the next two years. The key elements are the
基金the partial support of National Natural ScienceFoundation (Grant 70071011 .)
文摘This paper considers a capacity expansion problem with budget constraint. Suppose each edge in the network has two attributes: capacity and the degree of difficulty. The difficulty degree of a tree T is the maximum. degree of difficulty of all edges in the tree and the cost for coping with the difficulty in a tree is a nondecreasing function about the difficulty degree of the tree. The authors need to increase capacities of some edges so that there is a spanning tree whose capacity can be increased to the maximum extent, meanwhile the total cost for increasing capacity as well as overcoming the difficulty in the spanning tree does not exceed a given budget D*. Suppose the cost for increasing capacity on each edge is a linear function about the increment of capacity, they transform this problem into solving some hybrid parametric spanning tree problems([1]) and propose a strongly polynomial algorithm.
文摘This study developed a systematic decision-making process for water supply capacity expansion using the analytic hierarchy process. The decision-making criteria were categorized into environmental, economic, technical and socio-cultural aspects. Capacity expansion of three water resources (Kpong, Weija and Teshie plants) of Accra-Tema Metropolitan Area (Ghana) was studied as a test case. The research resulted in the environmental criterion with the highest priority weight (52.4%), followed by the economic (30.6%), technical (11.3%) and socio-cultural criteria (5.8%). The overall analysis ranked the Kpong plant with a score of 36.1% followed by the Weija and Teshie plants with scores 33.8% and 30.2%, respectively.
文摘The demand for nuclear fuel for research reactors is rising worldwide. Thus, the production facilities of this kind of fuel need reliable guidance on how to augment their production in order to meet the increasing demand efficiently and safely. We proposed a specific procedure for increasing production capacity. That procedure was tested with data from a real plant, which produces plate-type fuel elements loaded with LEU U3Si2-Al fuel. The test was made by means of discrete event simulation, and the results indicated the proposed procedure is efficient in raising production capacity.
文摘The minimum cost of capacity expansion for time-limited transportation problem on-demand (MCCETLTPD) is to find such a practicable capacity expansion transportation scheme satisfying the time-limited T along with all origins’ supply and all destinations’ demands as well as the expanding cost is minimum. Actually, MCCETLTPD is a balance transportation problem and a variant problem of minimum cost maximum flow problem. In this paper, by creating a mathematical model and constructing a network with lower and upper arc capacities, MCCETLTPD is transformed into searching feasible flow in the constructed network, and consequently, an algorithm MCCETLTPD-A is developed as MCCETLTPD’s solution method basing minimum cost maximum flow algorithm. Computational study validates that the MCCETLTPD-A algorithm is an efficient approach to solving the MCCETLTPD.
基金the National Natural Science Foundation of China (No. 29971004), and the Funds of Ministry of Education of China for Assistant
文摘The dominant phase ZrV2O7 material, doped with zirconia and vanadium (V) oxide, was synthesized by solid state reaction and sol-gel methods. X-ray power diffraction patterns show that it is cubic structure. Thermal mechanic analysis measurements exhibit a zero-thermal expansion of this material above 150 degreesC. Meanwhile, the heat capacity dependent on temperature, determined by differential scanning calorimetry, keeps in constant almost in the same temperature range. The relationship between unusual thermal expansion and abnormal heat capacity is discussed with Gruneisen parameter.
文摘Damaturu, the Yobe State Capital is one of the major towns in the semi-arid areas OfNortheastern Nigeria. It lacks adequate water supply. Being a State Capital, rapid improvements in itsinfrastructures including water supply to cope with increased demands are required. Three options forthe expansion of the present water supply system are been considered. These are Groundwater resourceswithin and around the existing system, and surface water schemes from two Dam sites identitied andappraised for this purpose. The Management of the Yobe State Water Board and the State Governmentare faced with the problem of which of these three options to choose. This is a typical capacity expansionproblem within a multicriterion setting in which the choice is to be bassed on economic, environmental,social as well as political considerstions. This paper presents a multicriterion analysis whose result willbe used in forming the basis of an informed decision to be made on why a particular option is to bechosen.
文摘This paper investigates the possibility of using the free expansion of gaseous CO2 in portable air-cooling systems. The cooling capacity of the gaseous CO2 free jet expansion was calculated using three different approaches and the results showed that the simplified calculations would give approximated cooling values with an 11.6% maximum error. The mass flow rate, upstream pressure and cooling capacity of the gaseous CO2 decreased with time. A maximum 48.5 watts of cooling was recorded at minute 4 and a minimum value of 10.4 watts at the end of the test. The drop in cooling capacity is due to the evaporation of the liquid CO2 inside the small cylinder which cools the two-phase CO2 mixture and causes a pressure drop (from 6 MPa to 2.97 MPa), which also affects the mass flow rate of gaseous CO2 exiting the orifice (from 0.56 g/s to 0.24 g/s). If this cooling technique is to be considered in portable compact-cooling systems, the mass, pressure and cooling capacity drop with time must be solved. One of the solutions could be to cover the cylinder with a heating coat to compensate for the heat absorbed by the evaporation of the liquid CO2.
文摘Thermal storage potential and thermal expansion are characteristic properties for extreme applications. ZrB2 is a candidate for advanced applications in aircraft and fusion reactors. This article presents density functional theory calculations of its states, microstructure and quasi-harmonic levels calculations of thermophysical properties. Band structure highlighted dynamical instability with metallic impurities in ZrB2 structure based on frequency modes. The observed projected density of states (PDOS) appropriate 4d orbital of Zr dominated at low frequency both in perfect crystal in the presence or absence of covalent impurities while B 2s and 2p orbitals dominate higher frequency states. Temperature dependency and anisotropy of coefficient of thermal expansion (CTE) were evaluated with various impurities. Various thermodynamic properties like entropy and free energy were explored for degrees of freedom resulting from internal energy changes in the material. Computed results for heat capacity and CTE were compared to available numerical and experimental data.
基金Funded by National Natural Science Foundation of China(No.51175257)。
文摘Split sleeve cold expansion(SSCX)can efiectively enhance fatigue life of holes by improving the field of residual stress.Numerical simulations were conducted to investigate the parameter influence mechanism and obtain higher compressive residual stress(CRS).Expansion method,degree of cold expansion(DCE),friction coefficient between laminations and depth-diameter ratio were analyzed.For Ti-Al stacked joint holes,two expansion methods are proposed,namely aluminum alloy first followed titanium alloy(Al first)and titanium alloy first followed aluminum alloy(Ti first).The results show that expansion method and DCE have significant efiects on the field of circumferential residual stress,and the friction has a negligible influence.A higher value of CRS and a wider layer of plastic deformation are induced with Ti first.Optimal DCE of TiAl stacked structure is 5.2%-5.6%.As the depth-diameter ratio is in the range of 0.5-1.25,a positive linear correlation between the maximum compressive residual stress(CRS_(max))and depth-diameter ratio is shown.
文摘Yulong Copper Co.,Ltd.,affiliated to West Mining Group,received the Mining License of the P.R.C.issued by Ministry of Land and Resources on July 17,2018,which approved a new capacity of 19.89 million t/a.According to report。
文摘大规模开发和利用风能有利于实现电力系统清洁低碳转型,是实现国家“碳达峰、碳中和”战略目标的重要技术手段,但风电出力的强不确定性对电力系统区域间可用输电能力(available transfer capability,ATC)评估带来了全新的挑战,传统用于求解计及风电出力不确定性的概率ATC评估模型在计算效率和计算精度方面均存在一定的不足。为此,该文提出一种基于多项式混沌展开(polynomialchaos expansion,PCE)的电力系统概率ATC评估方法,该方法首先构建基于机会约束的电力系统概率ATC评估模型;然后,根据风电出力预测误差的概率分布特征,选择对应的正交多项式为基函数以近似风电出力预测误差及电力网络中与之相关联的其他随机变量;进一步,借助Galerkin投影和基于一阶矩、二阶矩的机会约束转化方法,将所构建的机会约束模型的概率约束转化为确定性约束,实现基于机会约束的概率ATC评估模型向易于求解的确定性优化模型的转化;进而,将概率ATC评估模型的求解问题转化为ATC的最优多项式逼近系数的求解问题,根据求得的最优多项式逼近系数和选取的基函数计算电力系统ATC的概率分布特征;最后,通过修改后的PJM-5节点测试系统、IEEE-118节点测试系统及吉林西部电网实际算例验证了所提基于多项式混沌展开的电力系统概率ATC评估方法的准确性和有效性。
文摘Based on the microfluidic technology,a microscopic visualization model was used to simulate the gas injection process in the initial construction stage and the bottom water invasion/gas injection process in the cyclical injection-production stage of the underground gas storage(UGS)rebuilt from water-invaded gas reservoirs.Through analysis of the gas-liquid contact stabilization mechanism,flow and occurrence,the optimal control method for lifecycle efficient operation of UGS was explored.The results show that in the initial construction stage of UGS,the action of gravity should be fully utilized by regulating the gas injection rate,so as to ensure the macroscopically stable migration of the gas-liquid contact,and greatly improve the gas sweeping capacity,providing a large pore space for gas storage in the subsequent cyclical injection-production stage.In the cyclical injection-production stage of UGS,a constant gas storage and production rate leads to a low pore space utilization.Gradually increasing the gas storage and production rate,that is,transitioning from small volume to large volume,can continuously break the hydraulic equilibrium of the remaining fluid in the porous media,which then expands the pore space and flow channels.This is conducive to the expansion of UGS capacity and efficiency for purpose of peak shaving and supply guarantee.