The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stif...The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stiffness of the structure, leading to significant tensile and compressive stresses in the isolated bearings. To study the effect of aspect ratio on the seismic response and overturning resistance of a new staggered story isolated structure, three models with different aspect ratios were established. Nonlinear time-history analysis of the three models was conducted using ETABS finite element software. The results indicate that the overturning moment and overturning resistance moment of the superstructure in the new staggered story isolated structure increase with an increasing aspect ratio. However, the increase in the overturning moment of the superstructure is much greater than the increase in the overturning resistance moment, resulting in a decrease in the overturning resistance ratio of the superstructure with an increasing aspect ratio. The overturning moment and overturning resistance moment of the substructure in the new staggered story isolated structure decrease with an increasing aspect ratio. However, the decrease in the overturning moment of the substructure is greater than the decrease in the overturning resistance moment, leading to an increase in the overturning resistance ratio of the substructure with an increasing aspect ratio. The decrease in the overturning resistance ratio of the superstructure in the new staggered story isolated structure is much greater than the increase in the overturning resistance ratio of the substructure. Therefore, as the aspect ratio of the overall structure increases, the overturning resistance ratio of the superstructure and the entire structure decreases.展开更多
The low-cycle loading test of two staggered slab-column-boundary beam joints was carried out to study their seismic performance.The crack development,load-displacement relationship,displacement ductility,and energy di...The low-cycle loading test of two staggered slab-column-boundary beam joints was carried out to study their seismic performance.The crack development,load-displacement relationship,displacement ductility,and energy dissipation performance of the staggered slab-column joints(SSCJ)were studied.Experimental results reveal that both specimens present short-column brittle shear failure.Furthermore,an obvious hysteretic curve pinching phenomenon occurred.Thus,it can be concluded that the seismic performance of the joints is insufficient.These results suggest that the anchorage of the longitudinal reinforcement of the slab in the joint’s core area should be improved,and attention should be paid to the short-column stirrup configuration of the SSCJ.These results can provide a research basis for the design of such joints in future applications.展开更多
文摘The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stiffness of the structure, leading to significant tensile and compressive stresses in the isolated bearings. To study the effect of aspect ratio on the seismic response and overturning resistance of a new staggered story isolated structure, three models with different aspect ratios were established. Nonlinear time-history analysis of the three models was conducted using ETABS finite element software. The results indicate that the overturning moment and overturning resistance moment of the superstructure in the new staggered story isolated structure increase with an increasing aspect ratio. However, the increase in the overturning moment of the superstructure is much greater than the increase in the overturning resistance moment, resulting in a decrease in the overturning resistance ratio of the superstructure with an increasing aspect ratio. The overturning moment and overturning resistance moment of the substructure in the new staggered story isolated structure decrease with an increasing aspect ratio. However, the decrease in the overturning moment of the substructure is greater than the decrease in the overturning resistance moment, leading to an increase in the overturning resistance ratio of the substructure with an increasing aspect ratio. The decrease in the overturning resistance ratio of the superstructure in the new staggered story isolated structure is much greater than the increase in the overturning resistance ratio of the substructure. Therefore, as the aspect ratio of the overall structure increases, the overturning resistance ratio of the superstructure and the entire structure decreases.
基金The National Natural Science Foundation of China(No.59878013).
文摘The low-cycle loading test of two staggered slab-column-boundary beam joints was carried out to study their seismic performance.The crack development,load-displacement relationship,displacement ductility,and energy dissipation performance of the staggered slab-column joints(SSCJ)were studied.Experimental results reveal that both specimens present short-column brittle shear failure.Furthermore,an obvious hysteretic curve pinching phenomenon occurred.Thus,it can be concluded that the seismic performance of the joints is insufficient.These results suggest that the anchorage of the longitudinal reinforcement of the slab in the joint’s core area should be improved,and attention should be paid to the short-column stirrup configuration of the SSCJ.These results can provide a research basis for the design of such joints in future applications.