期刊文献+
共找到144篇文章
< 1 2 8 >
每页显示 20 50 100
Study on the Influence of Aspect Ratio on the Seismic Response and Overturning Resistance of a New Staggered Story Isolated Structure
1
作者 Tiange Zhao Dewen Liu 《World Journal of Engineering and Technology》 2024年第3期617-634,共18页
The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stif... The aspect ratio of the structure has a significant impact on the overall stability of the ultra high-rise building. A large aspect ratio of the structure increases the risk of overturning and reduces the lateral stiffness of the structure, leading to significant tensile and compressive stresses in the isolated bearings. To study the effect of aspect ratio on the seismic response and overturning resistance of a new staggered story isolated structure, three models with different aspect ratios were established. Nonlinear time-history analysis of the three models was conducted using ETABS finite element software. The results indicate that the overturning moment and overturning resistance moment of the superstructure in the new staggered story isolated structure increase with an increasing aspect ratio. However, the increase in the overturning moment of the superstructure is much greater than the increase in the overturning resistance moment, resulting in a decrease in the overturning resistance ratio of the superstructure with an increasing aspect ratio. The overturning moment and overturning resistance moment of the substructure in the new staggered story isolated structure decrease with an increasing aspect ratio. However, the decrease in the overturning moment of the substructure is greater than the decrease in the overturning resistance moment, leading to an increase in the overturning resistance ratio of the substructure with an increasing aspect ratio. The decrease in the overturning resistance ratio of the superstructure in the new staggered story isolated structure is much greater than the increase in the overturning resistance ratio of the substructure. Therefore, as the aspect ratio of the overall structure increases, the overturning resistance ratio of the superstructure and the entire structure decreases. 展开更多
关键词 Aspect Ratio A New staggered Story Isolated Structure Seismic Response Overturning Resistance Ratio Isolated Bearing
下载PDF
Progressive Collapse Resistance of a New Staggered Story Isolated System
2
作者 Yutong Yang Yuancheng Mi +4 位作者 Hong Li Zhongfa Guo Dewen Liu Weiwei Sun Min Lei 《Open Journal of Applied Sciences》 2024年第3期643-659,共17页
A new staggered isolated system developed from the mid-story isolated system is the new staggered story isolated system. There are not many studies on this structure currently. In this study, an 18-story new staggered... A new staggered isolated system developed from the mid-story isolated system is the new staggered story isolated system. There are not many studies on this structure currently. In this study, an 18-story new staggered story isolated system model is established using SAP2000. The dynamic nonlinear dynamic alternate method is used to analyze the structure against progressive collapse. Results show that the structure has good resistance to progressive collapse, and there is no progressive collapse under each working condition. The progressive collapse does not occur for the case of removing only one vertical structural member of the new staggered of isolated system. The side column has big influence on this isolated structures’ progressive collapse;the removal of vertical structural member of the isolation layer has less impact on the structure than the removal of the bottom vertical structural member. After the removing of the member, the internal force of the structure will be redistributed, and the axial force of the adjacent columns will change obviously, showing a trend of “near large and far small”. 展开更多
关键词 The New staggered Story Isolated System Alternative Load Path Method Collapse Resistance
下载PDF
Cosine-modulated window function-based staggered-grid finite-difference forward modeling 被引量:5
3
作者 王建 孟小红 +2 位作者 刘洪 郑婉秋 贵生 《Applied Geophysics》 SCIE CSCD 2017年第1期115-124,191,共11页
The numerical dispersion and computational cost are high for conventional Taylor series expansion staggered-grid finite-difference forward modeling owing to the high frequency of the wavelets and the large grid interv... The numerical dispersion and computational cost are high for conventional Taylor series expansion staggered-grid finite-difference forward modeling owing to the high frequency of the wavelets and the large grid intervals. In this study, the cosine-modulated binomial window function (CMBWF)-based staggered-grid finite-difference method is proposed. Two new parameters, the modulated time and modulated range are used in the new window function and by adjusting these two parameters we obtain different characteristics of the main and side lobes of the amplitude response. Numerical dispersion analysis and elastic wavefield forward modeling suggests that the CMBWF method is more precise and less computationally costly than the conventional Taylor series expansion staggered-grid finite-difference method. 展开更多
关键词 Elastic wave staggered grid window function cosine modulate
下载PDF
Variable-order rotated staggered-grid method for elastic-wave forward modeling
4
作者 王为中 胡天跃 +3 位作者 吕雪梅 秦臻 李艳东 张研 《Applied Geophysics》 SCIE CSCD 2015年第3期389-400,468,共13页
Numerical simulations of a seismic wavefield are important to analyze seismic wave propagation. Elastic-wave equations are used in data simulation for modeling migration and imaging. In elastic wavefield numerical mod... Numerical simulations of a seismic wavefield are important to analyze seismic wave propagation. Elastic-wave equations are used in data simulation for modeling migration and imaging. In elastic wavefield numerical modeling, the rotated staggered-grid method (RSM) is a modification of the standard staggered-grid method (SSM). The variable-order method is based on the method of variable-length spatial operators and wavefield propagation, and it calculates the real dispersion error by adapting different finite-difference orders to different velocities. In this study, the variable-order rotated staggered-grid method (VRSM) is developed after applying the variable-order method to RSM to solve the numerical dispersion problem of RSM in low-velocity regions and reduce the computation cost. Moreover, based on theoretical dispersion and the real dispersion error of wave propagation calculated with the wave separation method, the application of the original method is extended from acoustic to shear waves, and the calculation is modified from theoretical to time-varying values. A layered model and an overthrust model are used to demonstrate the applicability of VRSM. We also evaluate the order distribution, wave propagation, and computation time. The results suggest that the VRSM order distribution is reasonable and VRSM produces high-precision results with a minimal computation cost. 展开更多
关键词 Variable order rotated staggered grid DISPERSION shear wave time varying
下载PDF
Irregular surface seismic forward modeling by a body-fitted rotated–staggered-grid finite-difference method 被引量:4
5
作者 Cheng Jing-Wang Fan Na +1 位作者 Zhang You-Yuan Lü Xiao-Chun 《Applied Geophysics》 SCIE CSCD 2018年第3期420-431,共12页
Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transfo... Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transformation to curvilinear coordinates using body-fitted grids have been proposed, e.g., stand staggered grid(SSG) with interpolation, nonstaggered grid, rotated staggered grid(RSG), and fully staggered. The FD based on the RSG is somewhat superior to others because it satisfies the spatial distribution of the wave equation without additional memory and computational requirements; furthermore, it is simpler to implement. We use the RSG FD method to transform the firstorder stress–velocity equation in the curvilinear coordinates system and introduce the highprecision adaptive, unilateral mimetic finite-difference(UMFD) method to process the freeboundary conditions of an irregular surface. The numerical results suggest that the precision of the solution is higher than that of the vacuum formalism. When the minimum wavelength is low, UMFD avoids the surface wave dispersion. We compare FD methods based on RSG, SEM, and nonstaggered grid and infer that all simulation results are consistent but the computational efficiency of the RSG FD method is higher than the rest. 展开更多
关键词 FINITE DIFFERENCE FORWARD modeling GRID staggered rotated body-fitted SURFACE free BOUNDARY
下载PDF
Effect of extrusion ratio on the microstructure and texture evolution of AZ31 magnesium alloy by the staggered extrusion(SE) 被引量:7
6
作者 Yan-peng Wang Feng Li +2 位作者 Ye Wang Xue-wen Li Wen-win Fang 《Journal of Magnesium and Alloys》 SCIE EI CAS 2020年第4期1304-1313,共10页
There are many problems with the conventional processes of magnesium alloy bending products,such as long processes and difficulty in controlling the product shape.This paper provides a staggered extrusion(SE)process t... There are many problems with the conventional processes of magnesium alloy bending products,such as long processes and difficulty in controlling the product shape.This paper provides a staggered extrusion(SE)process to solve the above manufacturing bottlenecks.The effects of different extrusion ratios(λ)on the AZ31 magnesium alloy bending products prepared by the SE process was investigated in this paper.The results show that the bending radii of the AZ31 Mg bending products increase with the increase ofλat the same staggered distance(h=16 mm).When A is in creased from 11.11 to 44.44,the average bending radius of bending products is decreased from 14.7 mm to 9 mm,and the average grain size is decreased by 59.43%.After the SE process,the extruded fiber texture of the AZ31 Mg bending products is obvious,and the deformed texture is a mixed texture of{0001}(10-10)deformation texture and{10-11}(11-20)recrystallization texture.The results of XRD and EBSD showed that pyramidal slip is an important mode of crystal slip systems in AZ31 magnesium alloys during the SE process.It provided a scientific basis for forming AZ31 Mg alloy bending products with excellent microstructure by the SE process. 展开更多
关键词 Magnesium alloy staggered extrusion(SE) Bending behavior TEXTURE SLIP
下载PDF
A method of solving the stiffness problem in Biot's poroelastic equations using a staggered high-order finite-difference 被引量:3
7
作者 赵海波 王秀明 陈浩 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第12期2819-2827,共9页
In modelling elastic wave propagation in a porous medium, when the ratio between the fluid viscosity and the medium permeability is comparatively large, the stiffness problem of Blot's poroelastic equations will be e... In modelling elastic wave propagation in a porous medium, when the ratio between the fluid viscosity and the medium permeability is comparatively large, the stiffness problem of Blot's poroelastic equations will be encountered. In the paper, a partition method is developed to solve the stiffness problem with a staggered high-order finite-difference. The method splits the Biot equations into two systems. One is stiff, and solved analytically, the other is nonstiff, and solved numerically by using a high-order staggered-grid finite-difference scheme. The time step is determined by the staggered finite-difference algorithm in solving the nonstiff equations, thus a coarse time step may be employed. Therefore, the computation efficiency and computational stability are improved greatly. Also a perfect by matched layer technology is used in the split method as absorbing boundary conditions. The numerical results are compared with the analytical results and those obtained from the conventional staggered-grid finite-difference method in a homogeneous model, respectively. They are in good agreement with each other. Finally, a slightly more complex model is investigated and compared with related equivalent model to illustrate the good performance of the staggered-grid finite-difference scheme in the partition method. 展开更多
关键词 porous media STIFFNESS partition method staggered grid finite difference
下载PDF
Resistance Analysis of Unsymmetrical Trimaran Model with Outboard Sidehulls Configuration 被引量:5
8
作者 Yanuar Gunawan +2 位作者 M.A.Talahatu Ragil T.Indrawati A.Jamaluddin 《Journal of Marine Science and Application》 2013年第3期293-297,共5页
The application of multi-hull ship or trimaran vessel as a mode of transports in both river and sea environments have grown rapidly in recent years.Trimaran vessels are currently of interest for many new high speed sh... The application of multi-hull ship or trimaran vessel as a mode of transports in both river and sea environments have grown rapidly in recent years.Trimaran vessels are currently of interest for many new high speed ship projects due to the high levels of hydrodynamic efficiency that can be achieved,compared to the mono-hull and catamaran hull forms.The purpose of this study is to identify the possible effects of using an unsymmetrical trimaran ship model with configuration(S/L) 0.1-0.3 and R/L=0.1-0.2.Unsymmetrical trimaran ship model with main dimensions: L=2000mm,B=200 mm and T=45 mm.Experimental methods(towing tank) were performed in the study using speed variations at Froude number 0.1-0.6.The ship model was pulled by an electric motor whose speed could be varied and adjusted.The ship model resistance was measured precisely by using a load cell transducer.The comparison of ship resistance for each configuration with mono-hull was shown on the graph as a function of the total resistance coefficient and Froude number.The test results found that the effective drag reduction could be achieved up to 17% at Fr=0.35 with configuration S/L=0.1. 展开更多
关键词 trimaran model unsymmetrical hull ship resistance STAGGER drag reduction
下载PDF
Combined support mechanism of rock bolts and anchor cables for adjacent roadways in the external staggered split-level panel layout 被引量:2
9
作者 Adrian Batugin Zhiqiang Wang +1 位作者 Zehua Su Shermatova Sayyora Sidikovna 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第4期659-673,共15页
Using the spatial structure of the external staggered split-level panel layout,a combined support technology for adjacent roadways was developed and analyzed for a rock bolt and anchor cable mechanism.The influence of... Using the spatial structure of the external staggered split-level panel layout,a combined support technology for adjacent roadways was developed and analyzed for a rock bolt and anchor cable mechanism.The influence of the side rock bolt and anchor cable parameters on the mechanical properties of the anchorage body and the support stress distribution of the lateral coal body were revealed using the FLAC3D software.The optimal support parameters of the side rock bolts and anchor cables were subsequently determined,and the support effect of gob-side entry in a mining scenario was verified.The results show that the support of the side rock bolts and anchor cables improves the mechanical properties and stress state of the anchorage body,producing a good protective effect on the coal body of the air-intake entry roof and side wall.This is beneficial to the stability of the side wall and the realization of the suspension effect for roof rock bolts and anchor cables,which in turn makes the surrounding rock maintenance of the gob-side entry to a thick coal seam more favorable. 展开更多
关键词 Combined support Split-level panel layout External staggered gob-side entry Adjacent roadways
下载PDF
Fluid Flow Past a Circular Cylinder with Tandem Rod and Staggered Rod at Low Reynolds Number 被引量:2
10
作者 WU Wenbo WANG Jiasong 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第5期1053-1065,共13页
The flow past a primary cylinder with one tandem control rod and one staggered control rod is simulated in this paper through solving the Navier-Stokes equations. Two examples are simulated to validate the model, and ... The flow past a primary cylinder with one tandem control rod and one staggered control rod is simulated in this paper through solving the Navier-Stokes equations. Two examples are simulated to validate the model, and the results matched well with those of previous researches. The Reynolds number based on the diameter of the primary cylinder is 500. The diameter ratio between the control rod and the primary cylinder (d/D) is 0.25. It was found that the effect of the combination of one upstream tandem control rod and one staggered control rod on the hydrodynamics of the primary cylinder is a linear superposition of the effect of a corresponding single control rod, and the effect of the upstream tandem control rod is dominant at larger spacing ratios such as G/D=2. For the combination of a downstream tandem control rod and a staggered control rod, the effect of the control rods is different from that of the corresponding single control rod in the region of 0.2〈G/D〈0.5 & 30°〈a〈120° and 0.9〈G/D〈1.4 & 30°〈a〈50°, where the additional effect is obvious. In this case, the effect of the downstream tandem control rod is dominant at small spacing ratios (such as G/D=0.1). At moderate spacing ratios such as G/D=0.4, the effects of the tandem control rod and the staggered control rod are comparable in both cases. 展开更多
关键词 tandem and staggered control rods additional effect of double control rods vortex shedding drag and lift coefficients numerical simulation
下载PDF
Effect of cyclotron resonance on ‘hot’ dispersion in a staggered double metallic grating sheet beam travelling wave tube 被引量:1
11
作者 Jing WANG Yu FAN +3 位作者 Chen YANG Ding ZHAO Gang WANG Jirun LUO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第8期89-96,共8页
Based on the beam wave synchronous interaction in transverse and longitudinal directions at the same time and starting from Maxwell’s equation and linear Vlasov equation, the beam–wave interaction ‘hot’ dispersion... Based on the beam wave synchronous interaction in transverse and longitudinal directions at the same time and starting from Maxwell’s equation and linear Vlasov equation, the beam–wave interaction ‘hot’ dispersion equation considering both cyclotron resonance and Cherenkov resonance in a staggered double metallic grating traveling wave tube is deduced.Through the reasonable selection for geometric and electrical parameters, the numerical calculation and analysis of the ‘hot’ dispersion equation shows that the beam–wave interaction gain and frequency band with the cyclotron resonance enhancement effect are higher than those with only Cherenkov resonance radiation. 展开更多
关键词 staggered DOUBLE METALLIC GRATING SHEET BEAM travelling wave TUBE cyclotron resonance Cherenkov effects gain
下载PDF
Source wavefield reconstruction based on an implicit staggered-grid finite-difference operator for seismic imaging 被引量:1
12
作者 Zhi-Ming Ren Xue Dai Qian-Zong Bao 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2095-2106,共12页
Reverse time migration and full waveform inversion involve the crosscorrelation of two wavefields,propagated in the forward-and reverse-time directions,respectively.As a result,the forward-propagated wavefield needs t... Reverse time migration and full waveform inversion involve the crosscorrelation of two wavefields,propagated in the forward-and reverse-time directions,respectively.As a result,the forward-propagated wavefield needs to be stored,and then accessed to compute the correlation with the backward-propagated wavefield.Boundary-value methods reconstruct the source wavefield using saved boundary wavefields and can significantly reduce the storage requirements.However,the existing boundary-value methods are based on the explicit finite-difference(FD)approximations of the spatial derivatives.Implicit FD methods exhibit greater accuracy and thus allow for a smaller operator length.We develop two(an accuracy-preserving and a memory-efficient)wavefield reconstruction schemes based on an implicit staggered-grid FD(SFD)operator.The former uses boundary wavefields at M layers of grid points and the spatial derivatives of wavefields at one layer of grid points to reconstruct the source wavefield for a(2M+2)th-order implicit SFD operator.The latter applies boundary wavefields at N layers of grid points,a linear combination of wavefields at M–N layers of grid points,and the spatial derivatives of wavefields at one layer of grid points to reconstruct the source wavefield(0≤N<M).The required memory of accuracy-preserving and memory-efficient schemes is(M+1)/M and(N+2)/M times,respectively,that of the explicit reconstruction scheme.Numerical results reveal that the accuracy-preserving scheme can achieve accurate reconstruction at the cost of storage.The memory-efficient scheme with N=2 can obtain plausible reconstructed wavefields and images,and the storage amount is 4/(M+1)of the accuracy-preserving scheme. 展开更多
关键词 Finite difference Reverse time migration Source wavefield reconstruction IMPLICIT staggered grid
下载PDF
Passive Control of Flow-Induced Vibration(FIV)by Helical Strakes for Two Staggered Flexible Cylinders 被引量:1
13
作者 XU Wan-hai WANG Qi-cheng +1 位作者 QIN Wen-qi DU Zun-feng 《China Ocean Engineering》 SCIE EI CSCD 2021年第4期475-489,共15页
Helical strake is a widely-used device for passive flow-induced vibration(FIV)control of cylindrical structures.It is omnidirectional and can effectively reduce FIV response amplitude.Studies on the passive FIV contro... Helical strake is a widely-used device for passive flow-induced vibration(FIV)control of cylindrical structures.It is omnidirectional and can effectively reduce FIV response amplitude.Studies on the passive FIV control for cylindrical structures are mainly concerned with a single isolated cylinder,while the influence of wake interference between multiple cylinders on FIV suppression devices is less considered up to now.In engineering applications,multiple flexible cylinders with large aspect ratios can be subjected to complex flow forces,and the effects of wake interference are obvious.The FIV suppression effect of helical strake of a common configuration(17.5D pitch and 0.25D height,where D is the cylinder diameter)in two staggered cylinders system is still unknown.This paper systematically studied the FIV response of multiple cylinders system fitted with the helical strakes by model tests.The relative spatial position of the two cylinders is fixed at S=3.0D and T=8.0D,which ensures the cylindrical structures in the flow interference region.The experimental results show that the helical strakes effectively reduce the FIV response on staggered upstream cylinder,and the suppression efficiency is barely affected by the smooth or straked downstream cylinder.The corresponding FIV suppression efficiency on the downstream cylinder is remarkably reduced by the influence of the upstream wake flow.The wake-induced vibration(WIV)phenomenon is not observed on the staggered downstream cylinder,which normally occurs on the downstream straked cylinder in a tandem arrangement. 展开更多
关键词 flow-induced vibration(FIV) passive control helical strakes flexible cylinders staggered arrangement
下载PDF
Accuracy of the staggered-grid finite-difference method of the acoustic wave equation for marine seismic reflection modeling 被引量:1
14
作者 钱进 吴时国 崔若飞 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2013年第1期169-177,共9页
Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity- pressure formulatio... Seismic wave modeling is a cornerstone of geophysical data acquisition, processing, and interpretation, for which finite-difference methods are often applied. In this paper, we extend the velocity- pressure formulation of the acoustic wave equation to marine seismic modeling using the staggered-grid finite-difference method. The scheme is developed using a fourth-order spatial and a second-order temporal operator. Then, we define a stability coefficient (SC) and calculate its maximum value under the stability condition. Based on the dispersion relationship, we conduct a detailed dispersion analysis for submarine sediments in terms of the phase and group velocity over a range of angles, stability coefficients, and orders. We also compare the numerical solution with the exact solution for a P-wave line source in a homogeneous submarine model. Additionally, the numerical results determined by a Marmousi2 model with a rugged seafloor indicate that this method is sufficient for modeling complex submarine structures. 展开更多
关键词 marine seismic reflection modeling stability condition dispersion relation staggered grid finite-difference
下载PDF
A scheme to treat the singularity in global seismic wavefield simulation using pseudospectral method with staggered grids 被引量:1
15
作者 Yanbin Wang Hiroshi Takenaka 《Earthquake Science》 CSCD 2010年第2期121-127,共7页
The pseudospectral method has been applied to the simulation of seismic wave propagation in 2-D global Earth model. When a whole Earth model is considered, the center of the Earth is included in the model and then sin... The pseudospectral method has been applied to the simulation of seismic wave propagation in 2-D global Earth model. When a whole Earth model is considered, the center of the Earth is included in the model and then singularity arises at the center of the Earth where r=0 since the 1/r term appears in the wave equations. In this paper, we extended the global seismic wavefield simulation algorithm for regular grid mesh to staggered grid configuration and developed a scheme to solve the numerical problems associated with the above singularity for a 2-D global Earth model defined on staggered grid using pseudospectral method. This scheme uses a coordinate transformation at the center of the model, in which the field variables at the center are calculated in Cartesian coordinates from the values on the grids around the center. It allows wave propagation through the center and hence the wavefield at the center can be stably calculated. Validity and accuracy of the scheme was tested by compared with the discrete wavenumber method. This scheme could also be suitable for other numerical methods or models parameterized in cylindrical or spherical coordinates when singularity arises at the center of the model. 展开更多
关键词 seismic modeling wave propagation whole Earth pseudospectrai method staggered grid
下载PDF
Synergy of staggered stacking confinement and microporous defect fixation for high‐density atomic Fe^(Ⅱ)‐N_(4)oxygen reduction active sites 被引量:1
16
作者 Menghui Chen Yongting Chen +6 位作者 Zhili Yang Jin Luo Jialin Cai Joey Chung‐Yen Jung Jiujun Zhang Shengli Chen Shiming Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第7期1870-1878,共9页
The development of high‐performance nonprecious metal catalysts(NPMCs)to supersede Pt‐based catalysts for the oxygen reduction reaction(ORR)in polymer electrolyte membrane fuel cells is highly desirable but remains ... The development of high‐performance nonprecious metal catalysts(NPMCs)to supersede Pt‐based catalysts for the oxygen reduction reaction(ORR)in polymer electrolyte membrane fuel cells is highly desirable but remains challenging.In this paper,we present a pyrolysis strategy for spatial confinement and active‐site fixation using iron phthalocyanine(FePc),phthalocyanine(Pc)and Zn salts as precursors.In the obtained carbon‐based NPMC with a hierarchically porous nanostructure of thin‐layered carbon nanosheets,nearly 100%of the total Fe species are Fe^(Ⅱ)‐N_(4) active sites.In contrast,pyrolyzing FePc alone forms Fe‐based nanoparticles embedded in amorphous carbon with only 5.9%Fe^(Ⅱ)‐N_(4) active sites.Both experimental characterization and density functional theory calculations reveal that spatial confinement through the staggeredπ–πstacking of Pc macrocycles effectively prevents the demetallation of Fe atoms and the formation of Fe‐based nanoparticles via aggregation.Furthermore,Zn‐induced microporous defects allow the fixation of Fe^(Ⅱ)‐N_(4) active sites.The synergistic effect of staggered stacking confinement and microporous defect fixation results in a high density of atomic Fe^(Ⅱ)‐N_(4) active sites that can enhance the ORR.The optimal Fe^(Ⅱ)‐N_(4)‐C electro‐catalyst outperforms a commercial Pt/C catalyst in terms of half‐wave potential,methanol toler‐ance,and long‐term stability in alkaline media.This modulation strategy can greatly advance efforts to develop high‐performance NPMCs. 展开更多
关键词 Oxygen reduction reaction Synergy strategy staggered stacking confinement Microporous defects fixation Fe^(Ⅱ)‐N_(4)
下载PDF
Improved Staggered Algorithm for Phase-Field Brittle Fracture with the Local Arc-Length Method 被引量:1
17
作者 Zhijian Wu Li Guo Jun Hong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第1期611-636,共26页
The local arc-length method is employed to control the incremental loading procedure for phase-field brittle fracture modeling.An improved staggered algorithm with energy and damage iterative tolerance convergence cri... The local arc-length method is employed to control the incremental loading procedure for phase-field brittle fracture modeling.An improved staggered algorithm with energy and damage iterative tolerance convergence criteria is developed based on the residuals of displacement and phase-field.The improved staggered solution scheme is implemented in the commercial software ABAQUS with user-defined element subroutines.The layered system of finite elements is utilized to solve the coupled elastic displacement and phase-field fracture problem.A one-element benchmark test compared with the analytical solution was conducted to validate the feasibility and accuracy of the developed method.Our study shows that the result calculated with the developed method does not depend on the selected size of loading increments.The results of several numerical experiments show that the improved staggered algorithm is efficient for solving the more complex brittle fracture problems. 展开更多
关键词 Phase-field model brittle fracture crack propagation ABAQUS subroutine staggered algorithm
下载PDF
A staggered double vane circuit for a W-band traveling-wave tube amplifier 被引量:1
18
作者 赖剑强 魏彦玉 +4 位作者 刘洋 黄民智 唐涛 王文祥 宫玉彬 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第6期548-553,共6页
Based on the combination of a staggered double vane slow wave structure (SWS) and round electron beam, a 200-W W-band traveling-wave tube (TWT) amplifier is studied in this paper. The main advantages of round beam... Based on the combination of a staggered double vane slow wave structure (SWS) and round electron beam, a 200-W W-band traveling-wave tube (TWT) amplifier is studied in this paper. The main advantages of round beam operation over the sheet beam is that the round beam can be formed more easily and the focus requirement can be dramatically reduced. It operates in the fundamental mode at the first spatial harmonic. The geometric parameters are optimized and a transition structure for the slow wave circuit is designed which can well match the signal that enters into and goes out from the tube. Then a TWT model is established and the particle-in-cell (PIC) simulation results show that the tube can provide over 200-W output power in a frequency range of 88 GHz-103 GHz with a maximum power of 289 W at 95 GHz, on the assumption that the input power is 0.1 W and the beam power is 5.155 kW. The corresponding conversion efficiency and gain at 95 GHz are expected to be 5.6% and 34.6 dB, respectively. Such amplifiers can potentially be used in high power microwave-power-modules (MPM) and for other portable applications. 展开更多
关键词 traveling-wave tube staggered double vane slow wave structure W-BAND
下载PDF
Characteristics of a Drainage Channel with Staggered Indented Sills for Controlling Debris Flows 被引量:4
19
作者 CHEN Xiao-qing YOU Yong +2 位作者 CHEN Jian-gang HUANG Kai LI De-ji 《Journal of Mountain Science》 SCIE CSCD 2014年第5期1242-1252,共11页
The characteristics of a new type of drainage channel with staggered indented sills for controlling debris flows were studied. The intermediate fluid in the non-viscous debris flow exhibited a helical movement, wherea... The characteristics of a new type of drainage channel with staggered indented sills for controlling debris flows were studied. The intermediate fluid in the non-viscous debris flow exhibited a helical movement, whereas the fluid near the sidewall had a stop-start movement pattern; the viscous debris flow exhibited a stable structure between the indented sills. The experimental results indicate that the mean velocity of the debris flow increased with increasing channel gradients, and the debris flow velocity was slightly affected by the angle of the sills. The average velocity of the non-viscous debris flow increased in the range of(0.5–1.5) interval between the indented sills, whereas the average velocity of the viscous debris flow increased initially and then decreased in the range of(0.75–1.25) interval between the indented sills. The depth of the non-viscous debris flow tended to gradually increase as the channel gradients increased, whereas the depth of the viscous debris flow gradually decreased as the channel gradients increased. When the discharge of the debris flow was constant, the angle and the interval between the indented sills had a slight effect on the depth of the viscous debris flow, whereas the depth of the non-viscous debris flow exhibited a different trend, as the sill angles and intervals were varied. 展开更多
关键词 Debris flow Drainage channel staggered indented sill Wenchuan earthquake
下载PDF
Modeling of an Internal Stress and Strain Distribution of an Inverted Staggered Thin-Film Transistor Based on Two-Dimensional Mass-Spring-Damper Structure 被引量:1
20
作者 Yi Yang Robert Nawrocki +1 位作者 Richard Voyles Haiyan H.Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第11期515-539,共25页
Equipped with a two-dimensional topological structure,a group of masses,springs and dampers can be demonstrated to model the internal dynamics of a thin-film transistor(TFT).In this paper,the two-dimensional Mass-Spri... Equipped with a two-dimensional topological structure,a group of masses,springs and dampers can be demonstrated to model the internal dynamics of a thin-film transistor(TFT).In this paper,the two-dimensional Mass-Spring-Damper(MSD)representation of an inverted staggered TFT is proposed to explore the TFT’s internal stress/strain distributions,and the stress-induced effects on TFT’s electrical characteristics.The 2DMSD model is composed of a finite but massive number of interconnected cellular units.The parameters,such as mass,stiffness,and damping ratios,of each cellular unit are approximated from constitutive equations of the compositematerials,while the electrical properties of the inverted staggered TFT are characterized by utilizing an electro-mechanical coupling relation derived from the quantum mechanics.TFTs are often used in biomedical sensors/transducers attached to human skins,and,for the purpose of simulation and validation,the boundary conditions on the interface between the TFT and the human skin were modeled as a spatially distributed sinusoidal excitation with a frequency of 50 Hz,assuming the TFT thickness is more than tens of microns.The fidelity of the 2D MSD structure in the modeling of an inverted staggered TFT is verified by comparing its simulated total displacement fieldwith that of a finite element analysis(FEA)model.The advantages of the MSD model include a dramatic reduction in memory use by up to 60%and faster computation times that are up to 80%lower.More importantly,the MSD model is better suited than FEA to many problems in accurate tissue modeling for medical applications,for which FEA is becoming a bottleneck.This work develops a novel modeling approach,which can be extended to other types of flexible thin film transistors. 展开更多
关键词 Mass-spring-damper structure inverted staggered thin-film transistor electro-mechanical coupling relation quantum mechanics finite element analysis
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部