A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-ho...A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.展开更多
Nano/microcrystalline composite diamond films were deposited on the holes of WC-6%Co drawing dies by a two-step procedure using alternative carbon sources, i.e., methane for the microcrystalline diamond(MCD) layer a...Nano/microcrystalline composite diamond films were deposited on the holes of WC-6%Co drawing dies by a two-step procedure using alternative carbon sources, i.e., methane for the microcrystalline diamond(MCD) layer and acetone for the nanocrystalline diamond(NCD) layer. Moreover, the monolayer methane-MCD and acetone-NCD coated drawing dies were fabricated as comparisons. The adhesion and wear rates of the diamond coated drawing dies were also tested by an inner hole polishing apparatus. Compared with mono-layer diamond coated drawing die, the composite diamond coated one exhibits better comprehensive performance, including higher adhesive strength and better wear resistance than the NCD one, and smoother surface(Ra=65.3 nm) than the MCD one(Ra=95.6 nm) after polishing at the same time. Compared with the NCD coated drawing die, the working lifetime of the composite diamond coated one is increased by nearly 20 times.展开更多
Wear resistance of several zirconia toughened ceramics in comparison with a metal-ceramic Co-WC has been studied in drawing wire field test. Result indicates that the harder the ceramic die, the longer the service lif...Wear resistance of several zirconia toughened ceramics in comparison with a metal-ceramic Co-WC has been studied in drawing wire field test. Result indicates that the harder the ceramic die, the longer the service life. Excellent wear resistance of ceramic die is obtained with a very high hardness (19 GPa). The service life is nearly three times that of Co-WC die. SEM observation on wear surfaces showed that material removal is mainly caused by plastic flow and ploughing process. But when the ceramic is composed of zirconia, alumina and some titanium carbide, micro-chipping and tribochemical reaction take place, and wear rate increases. Wear and friction induced martensite was detected by XRD. The T-M (tetragonal to monoclinic) phase transformation has a contribution to inhibiting microfracture.展开更多
n this paper with Von Karmanis basic assumptions a kinematically admissible continuous velocity field has been established to drawing through parabolic dies (or called trumpet dies). Then by. using the curvilinear an...n this paper with Von Karmanis basic assumptions a kinematically admissible continuous velocity field has been established to drawing through parabolic dies (or called trumpet dies). Then by. using the curvilinear and the integral as a function of the upper limit an upper bound analytical solution of the drawing stress is obtained.展开更多
An advanced simulation that considers the effect of wire vibrations was proposed for predicting accurately wear profiles of a die used in a wire-drawing process.The effect of wire vibrations,the changes in the wear pr...An advanced simulation that considers the effect of wire vibrations was proposed for predicting accurately wear profiles of a die used in a wire-drawing process.The effect of wire vibrations,the changes in the wear profiles,and the generation of ringing during die approach were investigated by this simulation.Wire vibrations occurring between the die and the drum are governed by a partial differential equation called the wave equation,which is a function of the wire length,tension,density,and initial wire velocity.The wire-drawing process was simulated by the commercial code Abaqus FEA,and the die wear profiles were predicted by Archard’s wear model.The predicted profiles were compared with measured profiles of a worn drawing die after producing 5 t of AISI 1010 wire;the die was made of tungsten carbide with a Brinell hardness of HB 682.The profiles predicted by considering the effect of wire vibrations are in good agreement with the experimental data,indicating that the advanced simulation can be used to accurately predict the die wear profiles when ringing is observed during die approach.展开更多
The liner of a CNG pressure vessel is manufactured by a DDI(deep drawing and ironing)process for the cylinder part,which is a continuous process that includes a drawing process to reduce the diameter of the billet and...The liner of a CNG pressure vessel is manufactured by a DDI(deep drawing and ironing)process for the cylinder part,which is a continuous process that includes a drawing process to reduce the diameter of the billet and a subsequent ironing process to reduce the thickness of the billet.A tractrix die used in the 1^(st) deep drawing allows the blank to flow smoothly by decreasing the punch load and radial tensile stress occurring in the workpiece.It also increases the draw ratio compared to conventional dies,but it causes forming defects.In this study,a shape coefficient(S_(c))is proposed for the tractrix die using the blank diameter(D_(0)),inflow diameter of the workpiece(d_(i)),and inflow angle of the workpiece(θ)for design of the tractrix die.The effects of the thickness and inflow angle of the workpiece on wrinkling and folding were investigated through FEA.Also,a discriminant is proposed for the relative radial stress(σ)generated during the deep drawing process using the tractirx die and used to predict fracture.Based on the results,the blank thickness,the draw ratio,and the inflow of the workpiece angle in the 1^(st) deep drawing process are suggested,and the number of operations in the DDI process was reduced from 6 to 4.This improves the productivity and reduces the manufacturing cost.展开更多
The strips U deep drawing experiments were carried out to study the effect of die cavity dimension with an extension machine manufactured by SANS company. The effects of parameters were analyzed in deep drawing proces...The strips U deep drawing experiments were carried out to study the effect of die cavity dimension with an extension machine manufactured by SANS company. The effects of parameters were analyzed in deep drawing process under different experimental conditions, such as punch load, reduction of thickness, angle of U part and surface quality. The experiment results show that the punch load increases with the decrease of female radius, and larger blank holder force enlarges the range of increasing. With the increasing of blank holder force, the angle of U part increases, and the reduction of foil thickness at the corner becomes larger. Obvious scratch and accumulation at the die cavity corner were observed by SEM. The investigation results indicate that micro U deep drawing of foil is affected by micro die cavity dimension.展开更多
This paper covers the role of anisotropy,temperature,and strain rate on the flow behavior of the material when a conical die is used instead of conventional blank holder.The effect of anisotropy was investigated using...This paper covers the role of anisotropy,temperature,and strain rate on the flow behavior of the material when a conical die is used instead of conventional blank holder.The effect of anisotropy was investigated using Lankford’s coefficient(r)in three directions(0°,45°,and 90°).The effect of working temperatures(Room temperature,100°C-300°C)on drawing stress and strain rate sensitivity on punch pressure were also investigated in detail.ANSYS APDL was used to investigate the effects of temperature,strain rate and anisotropy.The simulation results have confirmed that the strain variation in the direction of r0 and r45 are more than the variation of r90.展开更多
The value of a drawing die's cone angle has great influence on wire drawing. In order to determine the optimum value of a drawing die' s cone angle, the plastic deformation power Wi, shear deformation power Wi and f...The value of a drawing die's cone angle has great influence on wire drawing. In order to determine the optimum value of a drawing die' s cone angle, the plastic deformation power Wi, shear deformation power Wi and friction power of contact surface Wf were calculated using the upper bound theory with a reasonable and movement permitted velocity field according to the related characteristics. Then the relation between half cone angle and unit drawing force was obtained and it was compared with the result with the spherical velocity field. The relative error of the two near the optimal value is only about 0. 26% through comparing with existing calculated results. Finally, in an ABAQUS environment the finite element modal of the wire rod with 12. 5 mm diameter in first drawing pass was established and the axial drawing force in different cone angles was obtained using the ABAQUS/Explicit explicit integration method. The finite element method (FEM) results verify the results using the upper bound theory and this indicated that the velocity field and the relation between half cone angle and unit drawing force reasonable.展开更多
Based on the experiments, a new technique of reducing tube with two linked 3-roll roller dies was developed. The external friction conditions, velocity and the non-uniform deformation of metal were distinctly improved...Based on the experiments, a new technique of reducing tube with two linked 3-roll roller dies was developed. The external friction conditions, velocity and the non-uniform deformation of metal were distinctly improved, and the friction between metal and tool was decreased. Corrosion strip layers and photo-elastic coatings methods were adopted in the experiment for measuring residual stress, and the residual stresses in the drawn tube with 3-roll dies are reduced.展开更多
This paper presents the work implemented in designing, fabricating and operating a model of a cheap hydraulic DDM (deep drawing machine), which is currently utilized in the manufacturing processes lab in the IED (I...This paper presents the work implemented in designing, fabricating and operating a model of a cheap hydraulic DDM (deep drawing machine), which is currently utilized in the manufacturing processes lab in the IED (Industrial Engineering Department) at An-Najah National University. The machine is used to conduct different experiments related to the deep drawing process. This work was implemented in three stages: the first was the design stage, in which all design calculations of the DDM elements were completed based on the specifications of the product (cup) to be drawn; the second was the construction stage, in which the DDM elements were fabricated and assembled at the engineering workshops of the university; the last was the operating and experimentation stage, in which the DDM was tested by conducting different experiments. The experience gained from designing and constructing such a mechanical lab equipment was found to be successful in terms of obtaining practical results that agree with those available in literature, cost-effective relative to the cost of a similar purchased equipment, as well as enhancing students' abilities in understanding the deep drawing process in particular and machine elements design concepts in general.展开更多
基金Project(51005154) supported by the National Natural Science Foundation of ChinaProject(12CG11) supported by the Chenguang Program of Shanghai Municipal Education Commission,ChinaProject(201104271) supported by the China Postdoctoral Science Foundation Special Funded Project
文摘A specific revised HFCVD apparatus and a novel process combining HFCVD and polishing technique were presented to deposit the micro-and nano-crystalline multilayered ultra-smooth diamond(USCD) film on the interior-hole surface of WC-Co drawing dies with aperture ranging from d1.0 mm to 60 mm.Characterization results indicate that the surface roughness values(Ra) in the entry zone,drawing zone and bearing zone of as-fabricated USCD coated drawing die were measured as low as 25.7,23.3 and 25.5 nm,respectively.Furthermore,the friction properties of USCD films were examined in both dry sliding and water-lubricating conditions,and the results show that the USCD film presents much superior friction properties.Its friction coefficients against ball-bearing steel,copper and silicon nitride balls(d4 mm),is always lower than that of microcrystalline diamond(MCD) or WC-Co sample,regardless of the lubricating condition.Meanwhile,it still presents competitive wear resistance with the MCD films.Finally,the working lifetime and performance of as-fabricated USCD coated drawing dies were examined under producing low-carbon steel pipes in dry-sliding and water-lubricating conditions.Under the water-lubricating drawing condition,its production significantly increases by about 20 times compared with the conventional WC-Co drawing dies.
基金Project(51275302) supported by the National Natural Science Foundation of China
文摘Nano/microcrystalline composite diamond films were deposited on the holes of WC-6%Co drawing dies by a two-step procedure using alternative carbon sources, i.e., methane for the microcrystalline diamond(MCD) layer and acetone for the nanocrystalline diamond(NCD) layer. Moreover, the monolayer methane-MCD and acetone-NCD coated drawing dies were fabricated as comparisons. The adhesion and wear rates of the diamond coated drawing dies were also tested by an inner hole polishing apparatus. Compared with mono-layer diamond coated drawing die, the composite diamond coated one exhibits better comprehensive performance, including higher adhesive strength and better wear resistance than the NCD one, and smoother surface(Ra=65.3 nm) than the MCD one(Ra=95.6 nm) after polishing at the same time. Compared with the NCD coated drawing die, the working lifetime of the composite diamond coated one is increased by nearly 20 times.
文摘Wear resistance of several zirconia toughened ceramics in comparison with a metal-ceramic Co-WC has been studied in drawing wire field test. Result indicates that the harder the ceramic die, the longer the service life. Excellent wear resistance of ceramic die is obtained with a very high hardness (19 GPa). The service life is nearly three times that of Co-WC die. SEM observation on wear surfaces showed that material removal is mainly caused by plastic flow and ploughing process. But when the ceramic is composed of zirconia, alumina and some titanium carbide, micro-chipping and tribochemical reaction take place, and wear rate increases. Wear and friction induced martensite was detected by XRD. The T-M (tetragonal to monoclinic) phase transformation has a contribution to inhibiting microfracture.
文摘n this paper with Von Karmanis basic assumptions a kinematically admissible continuous velocity field has been established to drawing through parabolic dies (or called trumpet dies). Then by. using the curvilinear and the integral as a function of the upper limit an upper bound analytical solution of the drawing stress is obtained.
基金supported by the National Core Research Center (NCRC) program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology (2010-0008-277)
文摘An advanced simulation that considers the effect of wire vibrations was proposed for predicting accurately wear profiles of a die used in a wire-drawing process.The effect of wire vibrations,the changes in the wear profiles,and the generation of ringing during die approach were investigated by this simulation.Wire vibrations occurring between the die and the drum are governed by a partial differential equation called the wave equation,which is a function of the wire length,tension,density,and initial wire velocity.The wire-drawing process was simulated by the commercial code Abaqus FEA,and the die wear profiles were predicted by Archard’s wear model.The predicted profiles were compared with measured profiles of a worn drawing die after producing 5 t of AISI 1010 wire;the die was made of tungsten carbide with a Brinell hardness of HB 682.The profiles predicted by considering the effect of wire vibrations are in good agreement with the experimental data,indicating that the advanced simulation can be used to accurately predict the die wear profiles when ringing is observed during die approach.
基金Supported by a 2-Year Research Grant of Pusan National University,Korea。
文摘The liner of a CNG pressure vessel is manufactured by a DDI(deep drawing and ironing)process for the cylinder part,which is a continuous process that includes a drawing process to reduce the diameter of the billet and a subsequent ironing process to reduce the thickness of the billet.A tractrix die used in the 1^(st) deep drawing allows the blank to flow smoothly by decreasing the punch load and radial tensile stress occurring in the workpiece.It also increases the draw ratio compared to conventional dies,but it causes forming defects.In this study,a shape coefficient(S_(c))is proposed for the tractrix die using the blank diameter(D_(0)),inflow diameter of the workpiece(d_(i)),and inflow angle of the workpiece(θ)for design of the tractrix die.The effects of the thickness and inflow angle of the workpiece on wrinkling and folding were investigated through FEA.Also,a discriminant is proposed for the relative radial stress(σ)generated during the deep drawing process using the tractirx die and used to predict fracture.Based on the results,the blank thickness,the draw ratio,and the inflow of the workpiece angle in the 1^(st) deep drawing process are suggested,and the number of operations in the DDI process was reduced from 6 to 4.This improves the productivity and reduces the manufacturing cost.
基金Projects(50835002 50805035) supported by the National Natural Science Foundation of ChinaProject(2008RFQXG041) supported by the Foundation for Innovation Scholars of Harbin, China
文摘The strips U deep drawing experiments were carried out to study the effect of die cavity dimension with an extension machine manufactured by SANS company. The effects of parameters were analyzed in deep drawing process under different experimental conditions, such as punch load, reduction of thickness, angle of U part and surface quality. The experiment results show that the punch load increases with the decrease of female radius, and larger blank holder force enlarges the range of increasing. With the increasing of blank holder force, the angle of U part increases, and the reduction of foil thickness at the corner becomes larger. Obvious scratch and accumulation at the die cavity corner were observed by SEM. The investigation results indicate that micro U deep drawing of foil is affected by micro die cavity dimension.
文摘This paper covers the role of anisotropy,temperature,and strain rate on the flow behavior of the material when a conical die is used instead of conventional blank holder.The effect of anisotropy was investigated using Lankford’s coefficient(r)in three directions(0°,45°,and 90°).The effect of working temperatures(Room temperature,100°C-300°C)on drawing stress and strain rate sensitivity on punch pressure were also investigated in detail.ANSYS APDL was used to investigate the effects of temperature,strain rate and anisotropy.The simulation results have confirmed that the strain variation in the direction of r0 and r45 are more than the variation of r90.
基金supported by Foundation of Guizhou Science and Technology Department under Grant No.[2008]2210 and No.[2009]3009Foundation of Guizhou University under Grant No. [2007]25
文摘The value of a drawing die's cone angle has great influence on wire drawing. In order to determine the optimum value of a drawing die' s cone angle, the plastic deformation power Wi, shear deformation power Wi and friction power of contact surface Wf were calculated using the upper bound theory with a reasonable and movement permitted velocity field according to the related characteristics. Then the relation between half cone angle and unit drawing force was obtained and it was compared with the result with the spherical velocity field. The relative error of the two near the optimal value is only about 0. 26% through comparing with existing calculated results. Finally, in an ABAQUS environment the finite element modal of the wire rod with 12. 5 mm diameter in first drawing pass was established and the axial drawing force in different cone angles was obtained using the ABAQUS/Explicit explicit integration method. The finite element method (FEM) results verify the results using the upper bound theory and this indicated that the velocity field and the relation between half cone angle and unit drawing force reasonable.
文摘Based on the experiments, a new technique of reducing tube with two linked 3-roll roller dies was developed. The external friction conditions, velocity and the non-uniform deformation of metal were distinctly improved, and the friction between metal and tool was decreased. Corrosion strip layers and photo-elastic coatings methods were adopted in the experiment for measuring residual stress, and the residual stresses in the drawn tube with 3-roll dies are reduced.
文摘This paper presents the work implemented in designing, fabricating and operating a model of a cheap hydraulic DDM (deep drawing machine), which is currently utilized in the manufacturing processes lab in the IED (Industrial Engineering Department) at An-Najah National University. The machine is used to conduct different experiments related to the deep drawing process. This work was implemented in three stages: the first was the design stage, in which all design calculations of the DDM elements were completed based on the specifications of the product (cup) to be drawn; the second was the construction stage, in which the DDM elements were fabricated and assembled at the engineering workshops of the university; the last was the operating and experimentation stage, in which the DDM was tested by conducting different experiments. The experience gained from designing and constructing such a mechanical lab equipment was found to be successful in terms of obtaining practical results that agree with those available in literature, cost-effective relative to the cost of a similar purchased equipment, as well as enhancing students' abilities in understanding the deep drawing process in particular and machine elements design concepts in general.