Growth and yield modeling has a long history in forestry. The methods of measuring the growth of stand basal area have evolved from those developed in the U.S.A. and Germany during the last century. Stand basal area m...Growth and yield modeling has a long history in forestry. The methods of measuring the growth of stand basal area have evolved from those developed in the U.S.A. and Germany during the last century. Stand basal area modeling has progressed rapidly since the first widely used model was published by the U.S. Forest Service. Over the years, a variety of models have been developed for predicting the growth and yield of uneven/even-aged stands using stand-level approaches. The modeling methodology has not only moved from an empirical approach to a more ecological process-based approach but also accommodated a variety of techniques such as: 1) simultaneous equation methods, 2) difference models, 3) artificial neural network techniques, 4) linear/nonlinear regression models, and 5) matrix models. Empirical models using statistical methods were developed to reproduce accurately and precisely field observations. In contrast, process models have a shorter history, developed originally as research and education tools with the aim of increasing the understanding of cause and effect relationships. Empirical and process models can be married into hybrid models in which the shortcomings of both component approaches can, to some extent, be overcome. Algebraic difference forms of stand basal area models which consist of stand age, stand density and site quality can fully describe stand growth dynamics. This paper reviews the current literature regarding stand basal area models, discusses the basic types of models and their merits and outlines recent progress in modeling growth and dynamics of stand basal area. Future trends involving algebraic difference forms, good fitting variables and model types into stand basal area modeling strategies are discussed.展开更多
Recently,with the rapid development of chemical vapor deposition(CVD)technology,large area free-standing CVD diamond films have been produced successfully.However,the coarse grain size on the surface and the non-unifo...Recently,with the rapid development of chemical vapor deposition(CVD)technology,large area free-standing CVD diamond films have been produced successfully.However,the coarse grain size on the surface and the non-uniform thickness of unprocessed CVD diamond films make it difficult to meet the application requirement.The current study evaluates several existing polishing methods for CVD diamond films,including mechanical polishing,chemical mechanical polishing and tribochemical polishing technology.展开更多
The cold and dry boreal forests of the Southwest Yukon are dominated by white spruce (Picea glauca), trembling aspen (Populus tremuloides) and balsam poplar (Populus balsamifera), and the variability in structure and ...The cold and dry boreal forests of the Southwest Yukon are dominated by white spruce (Picea glauca), trembling aspen (Populus tremuloides) and balsam poplar (Populus balsamifera), and the variability in structure and composition of stands depends on the favourability of disturbance, climate and site conditions for stimulating regeneration. In this study, we investigated relationships between stand structure and ecological, climatic and disturbance factors in the southwest Yukon. We found that white spruce dominates mature forests across the landscape, but it is regenerating proportionately less than trembling aspen. Nevertheless, regeneration of all the three species was abundant following any type or severity of disturbance. Height and diameter of both species varied with several environmental variables, particularly site physiography. Mixed stands of aspen and white spruce were more productive than pure stands of aspen or spruce. However, overall productivity in mixed stand decreased when density of aspen was more than 1000 stems/ ha. These results suggested that mixed stands of deciduous and coniferous species where appropriate should be promoted maintaining aspen density below 1000 stems/ha as the productivity declined beyond this threshold. Similarly, we suggest carrying out selection harvesting of co-dominant trees and regular thinning of intermediate trees to promote the height and diameter growth of the remaining trees.展开更多
基金This study was supported by the National Natural Science Foundation of China (Grant No. 30471389)
文摘Growth and yield modeling has a long history in forestry. The methods of measuring the growth of stand basal area have evolved from those developed in the U.S.A. and Germany during the last century. Stand basal area modeling has progressed rapidly since the first widely used model was published by the U.S. Forest Service. Over the years, a variety of models have been developed for predicting the growth and yield of uneven/even-aged stands using stand-level approaches. The modeling methodology has not only moved from an empirical approach to a more ecological process-based approach but also accommodated a variety of techniques such as: 1) simultaneous equation methods, 2) difference models, 3) artificial neural network techniques, 4) linear/nonlinear regression models, and 5) matrix models. Empirical models using statistical methods were developed to reproduce accurately and precisely field observations. In contrast, process models have a shorter history, developed originally as research and education tools with the aim of increasing the understanding of cause and effect relationships. Empirical and process models can be married into hybrid models in which the shortcomings of both component approaches can, to some extent, be overcome. Algebraic difference forms of stand basal area models which consist of stand age, stand density and site quality can fully describe stand growth dynamics. This paper reviews the current literature regarding stand basal area models, discusses the basic types of models and their merits and outlines recent progress in modeling growth and dynamics of stand basal area. Future trends involving algebraic difference forms, good fitting variables and model types into stand basal area modeling strategies are discussed.
基金Science and technology plan project of Hebei Academy of Sciences(No.191408)Natural Science Foundation of Hebei Province(E2019302005)
文摘Recently,with the rapid development of chemical vapor deposition(CVD)technology,large area free-standing CVD diamond films have been produced successfully.However,the coarse grain size on the surface and the non-uniform thickness of unprocessed CVD diamond films make it difficult to meet the application requirement.The current study evaluates several existing polishing methods for CVD diamond films,including mechanical polishing,chemical mechanical polishing and tribochemical polishing technology.
文摘The cold and dry boreal forests of the Southwest Yukon are dominated by white spruce (Picea glauca), trembling aspen (Populus tremuloides) and balsam poplar (Populus balsamifera), and the variability in structure and composition of stands depends on the favourability of disturbance, climate and site conditions for stimulating regeneration. In this study, we investigated relationships between stand structure and ecological, climatic and disturbance factors in the southwest Yukon. We found that white spruce dominates mature forests across the landscape, but it is regenerating proportionately less than trembling aspen. Nevertheless, regeneration of all the three species was abundant following any type or severity of disturbance. Height and diameter of both species varied with several environmental variables, particularly site physiography. Mixed stands of aspen and white spruce were more productive than pure stands of aspen or spruce. However, overall productivity in mixed stand decreased when density of aspen was more than 1000 stems/ ha. These results suggested that mixed stands of deciduous and coniferous species where appropriate should be promoted maintaining aspen density below 1000 stems/ha as the productivity declined beyond this threshold. Similarly, we suggest carrying out selection harvesting of co-dominant trees and regular thinning of intermediate trees to promote the height and diameter growth of the remaining trees.