Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a p...Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas.展开更多
Flying plots detection has been the focus of relay protection in power system for a long time. With the promotion of Smart substation in our country, the number of SV devices is greatly increased. Abnormal data (flyin...Flying plots detection has been the focus of relay protection in power system for a long time. With the promotion of Smart substation in our country, the number of SV devices is greatly increased. Abnormal data (flying plot) caused by sampling device itself has brought tremendous pressure to the power system. The traditional flying plot detection algorithm has plenty of defects, such as low pertinence, low sensitivity and long sampling period. This paper proposes a new algorithm to identify flying plot by analyzing the wave form characteristics of sampling data. The traditional waveform recognition methods are combined in this algorithm. It has the concept of standard wave window and can distinguish flying plot in a short time. In addition, sine recovery algorithm is used to recover the flying plot. This paper uses PSCAD software to verify the validity of this algorithm. Simulation results show that the proposed method has high reliability.展开更多
文摘Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas.
文摘Flying plots detection has been the focus of relay protection in power system for a long time. With the promotion of Smart substation in our country, the number of SV devices is greatly increased. Abnormal data (flying plot) caused by sampling device itself has brought tremendous pressure to the power system. The traditional flying plot detection algorithm has plenty of defects, such as low pertinence, low sensitivity and long sampling period. This paper proposes a new algorithm to identify flying plot by analyzing the wave form characteristics of sampling data. The traditional waveform recognition methods are combined in this algorithm. It has the concept of standard wave window and can distinguish flying plot in a short time. In addition, sine recovery algorithm is used to recover the flying plot. This paper uses PSCAD software to verify the validity of this algorithm. Simulation results show that the proposed method has high reliability.