Laser ablation coupled with inductively coupled plasma-mass spectrometry (LA-ICP-MS) calibration was conducted with multiple spot analyses on eleven intact rock samples using both an internal standard (IS) method and ...Laser ablation coupled with inductively coupled plasma-mass spectrometry (LA-ICP-MS) calibration was conducted with multiple spot analyses on eleven intact rock samples using both an internal standard (IS) method and a modified constant-sum (MCS) method. Methods were then compared for reported bulk elemental composition of the rocks. The MCS method was based on the sum of eight major elements, which is spatially more stable than one single major ele-ment as used in the IS method, and is quite constant among different rock samples. Calibrations were performed with standard reference materials NIST SRM 610, 612, 614, and 616. Little difference was found between using a single standard and a set of standards, because of the good linearity shown by the reference materials. Comparison of the two calibration methods shows that the MCS method produced better and more stable results than the IS method for heterogeneous samples. With the MCS method, approximately 94% to 95% of the total measurements are within the range of ±100% relative deviation, compared with 82% to 86% with the IS method. The IS method resulted insubstantial overestimations for some rock samples (e.g., 648% for Basalt BCR-2 using NIST SRM 610 as the calibration standard), while the largest deviation with the MCS method was 216% for U in Eagle Ford shale #80 sample. For Quartz latite QLO-1, a relative homogeneous sample, the IS method generated slightly better results than the MCS method. Regardless of method, spatially heterogeneous distribution of elements in the intact rock at the scale of the laser spot is considered to be the main reason for the large relative deviations seen in our work compared to published results.展开更多
Applications of certain multi-parameter acceleration techniques used with themodified New-ton-Raphson (mN-R) methods to solve the nonlinear equations arising from rigid-plasticfinite element analysis are investigated....Applications of certain multi-parameter acceleration techniques used with themodified New-ton-Raphson (mN-R) methods to solve the nonlinear equations arising from rigid-plasticfinite element analysis are investigated. New modified multi-parameter techniques, developed fromCrisfield's multi-parameter methods, are utilized to solve these nonlinear equations. The numericalperformance of these techniques is compared with the standard Newton-Raphson method (sN-R),Crisfield's single parameter method (C1), Crisfield's two parameter method (C2) and Crisfield'sthree parameter method (C3). The new techniques do not involve additional residual force calculationand require little extra computational effort. In addition, they are more robust and efficient thanother existing acceleration techniques.展开更多
As the worldwide commercialization of genetically modified organisms (GMOs) increases and consumers concern the safety of GMOs, many countries and regions are issuing labeling regulations on GMOs and their products....As the worldwide commercialization of genetically modified organisms (GMOs) increases and consumers concern the safety of GMOs, many countries and regions are issuing labeling regulations on GMOs and their products. Analytical methods and their standardization for GM ingredients in foods and feed are essential for the implementation of labeling regulations. To date, the GMO testing methods are mainly based on the inserted DNA sequences and newly produced proteins in GMOs. This paper presents an overview of GMO testing methods as well as their standardization.展开更多
文摘Laser ablation coupled with inductively coupled plasma-mass spectrometry (LA-ICP-MS) calibration was conducted with multiple spot analyses on eleven intact rock samples using both an internal standard (IS) method and a modified constant-sum (MCS) method. Methods were then compared for reported bulk elemental composition of the rocks. The MCS method was based on the sum of eight major elements, which is spatially more stable than one single major ele-ment as used in the IS method, and is quite constant among different rock samples. Calibrations were performed with standard reference materials NIST SRM 610, 612, 614, and 616. Little difference was found between using a single standard and a set of standards, because of the good linearity shown by the reference materials. Comparison of the two calibration methods shows that the MCS method produced better and more stable results than the IS method for heterogeneous samples. With the MCS method, approximately 94% to 95% of the total measurements are within the range of ±100% relative deviation, compared with 82% to 86% with the IS method. The IS method resulted insubstantial overestimations for some rock samples (e.g., 648% for Basalt BCR-2 using NIST SRM 610 as the calibration standard), while the largest deviation with the MCS method was 216% for U in Eagle Ford shale #80 sample. For Quartz latite QLO-1, a relative homogeneous sample, the IS method generated slightly better results than the MCS method. Regardless of method, spatially heterogeneous distribution of elements in the intact rock at the scale of the laser spot is considered to be the main reason for the large relative deviations seen in our work compared to published results.
文摘Applications of certain multi-parameter acceleration techniques used with themodified New-ton-Raphson (mN-R) methods to solve the nonlinear equations arising from rigid-plasticfinite element analysis are investigated. New modified multi-parameter techniques, developed fromCrisfield's multi-parameter methods, are utilized to solve these nonlinear equations. The numericalperformance of these techniques is compared with the standard Newton-Raphson method (sN-R),Crisfield's single parameter method (C1), Crisfield's two parameter method (C2) and Crisfield'sthree parameter method (C3). The new techniques do not involve additional residual force calculationand require little extra computational effort. In addition, they are more robust and efficient thanother existing acceleration techniques.
基金supported by the National Transgenic Plant Special Fundsupported by the National Special Project of Transgenic Organisms(2008ZX8012-002)
文摘As the worldwide commercialization of genetically modified organisms (GMOs) increases and consumers concern the safety of GMOs, many countries and regions are issuing labeling regulations on GMOs and their products. Analytical methods and their standardization for GM ingredients in foods and feed are essential for the implementation of labeling regulations. To date, the GMO testing methods are mainly based on the inserted DNA sequences and newly produced proteins in GMOs. This paper presents an overview of GMO testing methods as well as their standardization.