When the free standing riser(FSR)is in service in the ocean,its mechanical properties are affected by various factors,including complex ocean current forces,buoyancy of the buoyancy can,and torque caused by the deflec...When the free standing riser(FSR)is in service in the ocean,its mechanical properties are affected by various factors,including complex ocean current forces,buoyancy of the buoyancy can,and torque caused by the deflection of the upper floating body.These loads have a great influence on the deformation and internal force of the FSR.The static performance of FSR is investigated in this research under various working conditions.The finite element model of FSR is established based on the co-rotational method.The arc length approach is used to solve the model.The load is exerted in increments.The current load on the riser changes with the configuration of the riser.The accuracy of the numerical method is verified by Abaqus software.The calculation time is also compared.Then,the effects of uniform current,actual current and floating body yaw motion on FSR are studied by parameter analysis.Additionally,the influence of the FSR on the ocean current after the failure of part of the buoyancy can chamber is analyzed.The results show that the numerical model based on the co-rotational method can effectively simulate the large rotation and torsion behavior of FSR.This method has high computational efficiency and precision,and this method can quickly improve the efficiency of numerical calculation of static analysis of deep-water riser.The proposed technology may serve as an alternative to the existing proprietary commercial software,which uses a complex graphical user interface.展开更多
The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standi...The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.展开更多
Volume is an important attribute used in many forest management decisions.Data from 83 fixed-area plots located in central New Brunswick,Canada,are used to examine how different measures of stand-level diameter and he...Volume is an important attribute used in many forest management decisions.Data from 83 fixed-area plots located in central New Brunswick,Canada,are used to examine how different measures of stand-level diameter and height influence volume prediction using a stand-level variant of Honer's(1967)volume equation.When density was included in the models(Volume=f(Diameter,Height,Density))choice of diameter measure was more important than choice of height measure.When density was not included(Volume=f(Diameter,Height)),the opposite was true.For models with density included,moment-based estimators of stand diameter and height performed better than all other measures.For models without density,largest tree estimators of stand diameter and height performed better than other measures.The overall best equation used quadratic mean diameter,Lorey's height,and density(root mean square error=5.26 m^3·ha^(-1);1.9%relative error).The best equation without density used mean diameter of the largest trees needed to calculate a stand density index of 400 and the mean height of the tallest 400 trees per ha(root mean square error=32.08 m^(3)·ha^(-1);11.8%relative error).The results of this study have some important implications for height subsampling and LiDAR-derived forest inventory analyses.展开更多
Spraying nanocellulose onto films provides a quick and scalable way to create free-standing films with exceptional consistency and customizable thickness. This method increases the application of nanocellulose films i...Spraying nanocellulose onto films provides a quick and scalable way to create free-standing films with exceptional consistency and customizable thickness. This method increases the application of nanocellulose films in various industries and satisfies the requirements of large-scale production. In the field of biomedicine, spray-coated free-standing nanocellulose films hold great promise for applications such as drug delivery, tissue engineering, wound healing, device coatings, and biosensing. They are excellent nanomaterials for a variety of biomedical applications due to their special qualities, including biocompatibility, high mechanical strength, porous structure, large surface area, and adaptability. This paper reviewed the detailed exposure of the spray coating process of nanocellulose suspension onto free- standing films and its biomedical applications.展开更多
Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a...Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a great influence on the concentration of nitrite tested by spectrophotometric method. In this context, three kinds of food samples are prepared, including canned mustard, canned fish and home-made pickled water. A series of standing times are placed during the sample pretreatments and the corresponding nitrite contents in these samples are detected by spectrophotometric method based on N-ethylenediamine dihydrochloride. This study aims to find out a reasonable standing time during the pretreatment of food sample, providing influence factor for precise detection of nitrite.展开更多
In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercriti...In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.展开更多
The streamer that is driven by the specific pulse DC discharge parameters can stably form a three-dimensional helical plasma channel in a long dielectric tube in the low-temperature plasma experiment,in cases when the...The streamer that is driven by the specific pulse DC discharge parameters can stably form a three-dimensional helical plasma channel in a long dielectric tube in the low-temperature plasma experiment,in cases when there were neither external background magnetic field or other factors that destroyed the poloidal symmetry of the tube.The formation mechanism and chirality of helical streamers are discussed according to the surface electromagnetic standing wave theory.The shape of the helical streamers and the characteristics of helical branches are quantitatively analyzed to further expand the application of plasma and streamer theory in the helix problem and chiral catalytic synthesis.展开更多
Twenty-seven specimens were tested to investigate the uniaxial compression behaviour of an innovative standing support for underground space applications.The innovative standing support consisted of an external fibre ...Twenty-seven specimens were tested to investigate the uniaxial compression behaviour of an innovative standing support for underground space applications.The innovative standing support consisted of an external fibre reinforced polymer(FRP)jacket and the infill column made of cementitious grout,tailings and coal wash rejects.Effects of the FRP layers number and water to the cementitious grout(w/g)ratio were evaluated.Test results indicated that lower w/g ratios produced stronger infill columns.With FRP confinement,the standing support demonstrated strain-hardening loading characteristics with a significant improvement in both strength and ductility.The highest strength and strain of the specimens achieved was 58.4 MPa and 11.8%respectively.Compared with the unconfined specimens,the confinement with four FRP layers increased the specimen strength and associated strain up to 3.6 and 27.0 times respectively.A correlation between the compressive strength of the infill material and the ultrasonic pulse velocity was also investigated.Furthermore,a simple design-oriented model was proposed to predict the peak strength and the corresponding strain of the innovative standing support.展开更多
Thinning is an effective management step for sustainable forest development,yet less attention is paid to the restoration of soil microbiota after thinning.In this study,both abundant and rare soil microbial communiti...Thinning is an effective management step for sustainable forest development,yet less attention is paid to the restoration of soil microbiota after thinning.In this study,both abundant and rare soil microbial communities(i.e.,bacterial,fungal),were evaluated under various thinning treatments in a mixed stand of Cunninghamia lanceolata and Sassafras tzumu using Mi Seq sequencing.Thinning did not significantly change either abundant or rare bacterial and fungal community composition,but affected their alpha diversity.The Shannon–Wiener indexes of rare fungal taxa under medium thinning were significantly lower than in the light thinning(P<0.05 level).Xanthobacteraceae dominated the abundant bacterial taxa,and Saitozyma and Mortierlla the abundant fungal taxa.The most common rare bacterial taxa varied;there was no prevalent rare fungal taxa under different thinnings.In addition,soil available nitrogen,total phosphorus,and p H had significant effects on rare bacterial taxa.Nutrients,especially available phosphorus,but not nitrogen,affected abundant and rare soil fungi.The results indicate that soil properties rather than plant factors affect abundant and rare microbial communities in soils of mixed stands.Thinning,through mediating soil properties,influences both abundant and rare bacterial and fungal communities in the mixed C.lanceolata and S.tzumu stand.展开更多
On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in f...On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in four types of grazed areas based on the grazing regime adopted:calf-grazed,high-intensity-grazed,low-intensity-grazed,ungrazed control.For each area,we set up three permanent circular plots(radius of 15 m)to survey the structural and dasometric characteristics of the overstorey,understorey,and regeneration layer.The results showed that grazing negatively affected the complexity of the forest structure and its potential to regenerate and maintain a high level of biodiversity.The differences in stand structure observed between the grazing areas were closely related to livestock density.The most sensitive components of the system were the understorey and the regeneration layers.Contrarily,the current grazing management did not affect the dominant tree structure or its composition.Our findings identified medium-term monitoring and regeneration management as the two significant aspects to consider when assessing sustainable livestock.New forests can be established by excluding graz-ing for about 20–25 years.展开更多
Land use change affects the balance of organic carbon(C)reserves and the global C cycle.Microbial residues are essential constituents of stable soil organic C(SOC).However,it remains unclear how microbial residue chan...Land use change affects the balance of organic carbon(C)reserves and the global C cycle.Microbial residues are essential constituents of stable soil organic C(SOC).However,it remains unclear how microbial residue changes over time following afforestation.In this study,16-,23-,52-,and 62-year-old Mongolian pine stands and 16-year-old cropland were studied in the Horqin Sandy Land,China.We analyzed changes in SOC,amino sugar content,and microbial parameters to assess how microbial communities influence soil C transformation and preservation.The results showed that SOC storage increased with stand age in the early stage of afforestation but remained unchanged at about 1.27-1.29 kg/m2 after 52 a.Moreover,there were consistent increases in amino sugars and microbial residues with increasing stand age.As stand age increased from 16 to 62 a,soil pH decreased from 6.84 to 5.71,and the concentration of total amino sugars increased from 178.53 to 509.99 mg/kg.A significant negative correlation between soil pH and the concentration of specific and total amino sugars was observed,indicating that the effects of soil acidification promote amino sugar stabilization during afforestation.In contrast to the Mongolian pine plantation of the same age,the cropland accumulated more SOC and microbial residues because of fertilizer application.Across Mongolian pine plantation with different ages,there was no significant change in calculated contribution of bacterial or fungal residues to SOC,suggesting that fungi were consistently the dominant contributors to SOC with increasing time.Our results indicate that afforestation in the Horqin Sandy Land promotes efficient microbial growth and residue accumulation in SOC stocks and has a consistent positive impact on SOC persistence.展开更多
Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical fores...Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.展开更多
Forest management planning often relies on Airborne Laser Scanning(ALS)-based Forest Management Inventories(FMIs)for sustainable and efficient decision-making.Employing the area-based(ABA)approach,these inventories es...Forest management planning often relies on Airborne Laser Scanning(ALS)-based Forest Management Inventories(FMIs)for sustainable and efficient decision-making.Employing the area-based(ABA)approach,these inventories estimate forest characteristics for grid cell areas(pixels),which are then usually summarized at the stand level.Using the ALS-based high-resolution Norwegian Forest Resource Maps(16 m×16 m pixel resolution)alongside with stand-level growth and yield models,this study explores the impact of three levels of pixel aggregation(standlevel,stand-level with species strata,and pixel-level)on projected stand development.The results indicate significant differences in the projected outputs based on the aggregation level.Notably,the most substantial difference in estimated volume occurred between stand-level and pixel-level aggregation,ranging from-301 to+253 m^(3)·ha^(-1)for single stands.The differences were,on average,higher for broadleaves than for spruce and pine dominated stands,and for mixed stands and stands with higher variability than for pure and homogenous stands.In conclusion,this research underscores the critical role of input data resolution in forest planning and management,emphasizing the need for improved data collection practices to ensure sustainable forest management.展开更多
The presented work examines the mechanism and conditions of self-motion in bodies as systems of interacting elements. It is shown how the oscillation parameters of these elements determine the mode of motion of the sy...The presented work examines the mechanism and conditions of self-motion in bodies as systems of interacting elements. It is shown how the oscillation parameters of these elements determine the mode of motion of the system (body). In this case, the motion is considered as a consequence of symmetry breaking of forces in the systems themselves, and not as a reaction of individual elements to external influences. It is shown that such a violation takes place both in the gravitational field and when the system moves by inertia. Examples of the influence of changes in phase (φ) and frequency (f) parameters of the system elements on the velocity mode of its motion in space are considered. The identity of the causes of self-motion is revealed both in the case of gravitation and inertial motion.展开更多
Different forest stands in the Dongjiang Lake Reservoir area of Zixing were selected as the research objects to study the characteristics of runoff generation in different forest stands.The results showed that there w...Different forest stands in the Dongjiang Lake Reservoir area of Zixing were selected as the research objects to study the characteristics of runoff generation in different forest stands.The results showed that there was no significant difference in annual runoff among M3,M1,and M5,and no significant difference between each forest stand and the control.The order was M3(22.75 mm)>M1(21.77 mm)>M5(20.14 mm).Forest vegetation generates less runoff through vegetation restoration compared to the control,indicating that forest vegetation reconstruction and restoration are beneficial for soil and water conservation.展开更多
Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting ac...Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting according to the consistency between the characteristics of Fuzzy distribution function and the distribution series of cumulative percentage of stand base diameter, and the fitting precision and effect of Fuzzy distribution function were discussed. The root mean square error RMSE and determination coefficient R<sup>2</sup> values showed that Fuzzy-Γ<sub>1</sub>, Fuzzy-Γ<sub>2</sub>, Fuzzy-Γ<sub>3</sub>, Fuzzy-Γ<sub>4</sub> had good fitting performance, among which Fuzzy-Γ<sub>1</sub> had relatively high fitting precision, and its parameters were closely related to stand age and density, Fuzzy-Γ<sub>2</sub> distribution function was the second, and Fuzzy-Γ<sub>4</sub> distribution function had the worst fitting effect. By introducing a parameter c from the similarity of four distribution function formulas, a generalized Fuzzy distribution function Fuzzy-Γ<sub>5</sub> is obtained. This function shows the highest fitting accuracy. Most of the values of parameter c are near 1 or 2, which shows that the diameter distribution is mainly approximate to Fuzzy-Γ<sub>1</sub> and Fuzzy-Γ<sub>2</sub>.展开更多
The origin of elementary particle mass is considered as a function of n-valued graviton quanta. To develop this concept we begin in a cold region of “empty space” comprised of only microscopic gravitons oscillating ...The origin of elementary particle mass is considered as a function of n-valued graviton quanta. To develop this concept we begin in a cold region of “empty space” comprised of only microscopic gravitons oscillating at angular frequency ω. From opposite directions enters a pair of stray protons. Upon colliding, heat and energy are released. Customarily, this phase and what follows afterward would be described by Quantum Chromodynamics (QCD). Instead, we argue for an intermediary step. One in which neighboring gravitons absorb discrete amounts of plane-wave energy. Captured by the graviton, the planewave becomes a standing wave, whereupon its electromagnetic energy densities are converted into gravitational quanta. Immediately thereafter an elementary particle is formed and emitted, having both mass and spin. From absorption to conversion to emission occurs in less than 3.7 × 10−16 s. During this basic unit of hybrid time, general relativity and quantum physics unite into a common set of physical laws. As additional stray protons collide the process continues. Over eons, vast regions of spacetime become populated with low-mass particles. These we recognize to be dark matter by its effects on large scale structures in the universe. Its counterpart, dark energy, arises when the conversion of gravitational quanta to particle emission is interrupted. This causes the gravitational quanta to be ejected. It is recognized by its large scale effects on the universe.展开更多
如何在逆境中坚持不懈,将失败转化为通往成功的阶梯?让我们一起到文章中寻找答案!Life is like a big picture, and every part of it stands for a choice, a hard time,or a win. Making your own way isn't just about getting w...如何在逆境中坚持不懈,将失败转化为通往成功的阶梯?让我们一起到文章中寻找答案!Life is like a big picture, and every part of it stands for a choice, a hard time,or a win. Making your own way isn't just about getting where you want to go;it's about keeping on trying, even when things get tough.展开更多
A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented. The proposed model starts from the assumption that the vibration character...A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented. The proposed model starts from the assumption that the vibration characteristics of the stator is not affected by the contact process. A modified friction models was used to analyze the contact problems. Firstly, the dynamic normal contact force, interface friction force, and steady-state characteristics were analyzed. Secondly, the influences of the contact layer material, the dynamic characteristics of the stator, and the pre-load on motor performance were simulated. Finally, to validate the contact model, a linear ultrasonic motor based on in-plane modes was used as an example. The corresponding results show that a set of simulation of motor performances based on the proposed contact mechanism is in good agreement with experimental results. This model is helpful to understanding the operation principle of the standing wave linear motor and thus contributes to the design of these types of motor.展开更多
It was attempted to enhance and accelerate the separation of oxidation inclusions from magnesium alloy melt by virtue of ultrasonic agglomeration technology.In order to investigate the feasibility and effectiveness of...It was attempted to enhance and accelerate the separation of oxidation inclusions from magnesium alloy melt by virtue of ultrasonic agglomeration technology.In order to investigate the feasibility and effectiveness of standing waves for ultrasonic purification of magnesium alloy melt,numerical simulation and relevant experiment were carried out.The numerical simulation was broken into two main aspects.On one hand,the ultrasonic field propagations within the cells with various shapes were characterized by numerical solutions of the wave equation and with a careful choice of geometry a nearly idealized standing wave field was finally obtained.On the other hand,within such a standing wave field the agglomeration behavior of oxidation inclusions in magnesium alloy melt was analyzed and discussed.The agglomeration time and agglomeration position of oxidation inclusions were predicted with numerical simulation method.The results show that the oxidation inclusions whose apparent densities are close to the density of the melt can agglomerate at wave nodes in a short time which to a great extent enhances and accelerates the separation of oxidation inclusions from magnesium alloy melt.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52271299).
文摘When the free standing riser(FSR)is in service in the ocean,its mechanical properties are affected by various factors,including complex ocean current forces,buoyancy of the buoyancy can,and torque caused by the deflection of the upper floating body.These loads have a great influence on the deformation and internal force of the FSR.The static performance of FSR is investigated in this research under various working conditions.The finite element model of FSR is established based on the co-rotational method.The arc length approach is used to solve the model.The load is exerted in increments.The current load on the riser changes with the configuration of the riser.The accuracy of the numerical method is verified by Abaqus software.The calculation time is also compared.Then,the effects of uniform current,actual current and floating body yaw motion on FSR are studied by parameter analysis.Additionally,the influence of the FSR on the ocean current after the failure of part of the buoyancy can chamber is analyzed.The results show that the numerical model based on the co-rotational method can effectively simulate the large rotation and torsion behavior of FSR.This method has high computational efficiency and precision,and this method can quickly improve the efficiency of numerical calculation of static analysis of deep-water riser.The proposed technology may serve as an alternative to the existing proprietary commercial software,which uses a complex graphical user interface.
基金supported by the National Natural Science Foundation of China(Grant Nos.52278407 and 52378407)the China Postdoctoral Science Foundation(Grant No.2023M732670)the support by the Postdoctoral Fellowship Program of China Postdoctoral Science Foundation.
文摘The widespread utilisation of tunnel boring machines(TBMs)in underground construction engineering requires a detailed investigation of the cutter-rock interaction.In this paper,we conduct a series of largescale standing rotary cutting tests on granite in conjunction with high-fidelity numerical simulations based on a particle-type discrete element method(DEM)to explore the effects of key cutting parameters on the TBM cutter performance and the distribution of cutter-rock contact stresses.The assessment results of cutter performance obtained from the cutting tests and numerical simulations reveal similar dependencies on the key cutting parameters.More specifically,the normal and rolling forces exhibit a positive correlation with penetration but are slightly influenced by the cutting radius.In contrast,the side force decreases as the cutting radius increases.Additionally,the side force shows a positive relationship with the penetration for smaller cutting radii but tends to become negative as the cutting radius increases.The cutter's relative effectiveness in rock breaking is significantly impacted by the penetration but shows little dependency on the cutting radius.Consequently,an optimal penetration is identified,leading to a low boreability index and specific energy.A combined Hertz-Weibull function is developed to fit the cutter-rock contact stress distribution obtained in DEM simulations,whereby an improved CSM(Colorado School of Mines)model is proposed by replacing the original monotonic cutting force distribution with this combined Hertz-Weibull model.The proposed model outperforms the original CSM model as demonstrated by a comparison of the estimated cutting forces with those from the tests/simulations.The findings from this work that advance our understanding of TBM cutter performance have important implications for improving the efficiency and reliability of TBM tunnelling in granite.
基金the Natural Sciences and Engineering Research Council of Canada(Discovery Grant RGPIN-2023-05879)the New Brunswick Innovation Foundation(Emerging Projects Grant EP-0000000033)。
文摘Volume is an important attribute used in many forest management decisions.Data from 83 fixed-area plots located in central New Brunswick,Canada,are used to examine how different measures of stand-level diameter and height influence volume prediction using a stand-level variant of Honer's(1967)volume equation.When density was included in the models(Volume=f(Diameter,Height,Density))choice of diameter measure was more important than choice of height measure.When density was not included(Volume=f(Diameter,Height)),the opposite was true.For models with density included,moment-based estimators of stand diameter and height performed better than all other measures.For models without density,largest tree estimators of stand diameter and height performed better than other measures.The overall best equation used quadratic mean diameter,Lorey's height,and density(root mean square error=5.26 m^3·ha^(-1);1.9%relative error).The best equation without density used mean diameter of the largest trees needed to calculate a stand density index of 400 and the mean height of the tallest 400 trees per ha(root mean square error=32.08 m^(3)·ha^(-1);11.8%relative error).The results of this study have some important implications for height subsampling and LiDAR-derived forest inventory analyses.
文摘Spraying nanocellulose onto films provides a quick and scalable way to create free-standing films with exceptional consistency and customizable thickness. This method increases the application of nanocellulose films in various industries and satisfies the requirements of large-scale production. In the field of biomedicine, spray-coated free-standing nanocellulose films hold great promise for applications such as drug delivery, tissue engineering, wound healing, device coatings, and biosensing. They are excellent nanomaterials for a variety of biomedical applications due to their special qualities, including biocompatibility, high mechanical strength, porous structure, large surface area, and adaptability. This paper reviewed the detailed exposure of the spray coating process of nanocellulose suspension onto free- standing films and its biomedical applications.
文摘Food safety problems caused by excessive nitrite addition have been frequently reported and the detection of nitrite in food is particularly important. The standing time during the pretreatment of primary sample has a great influence on the concentration of nitrite tested by spectrophotometric method. In this context, three kinds of food samples are prepared, including canned mustard, canned fish and home-made pickled water. A series of standing times are placed during the sample pretreatments and the corresponding nitrite contents in these samples are detected by spectrophotometric method based on N-ethylenediamine dihydrochloride. This study aims to find out a reasonable standing time during the pretreatment of food sample, providing influence factor for precise detection of nitrite.
文摘In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential.
基金This work was supported by National Natural Science Foundation of China(Nos.12005061,12065019)the Natural Science Foundation of Jiangxi Province(No.20202 BABL214036).
文摘The streamer that is driven by the specific pulse DC discharge parameters can stably form a three-dimensional helical plasma channel in a long dielectric tube in the low-temperature plasma experiment,in cases when there were neither external background magnetic field or other factors that destroyed the poloidal symmetry of the tube.The formation mechanism and chirality of helical streamers are discussed according to the surface electromagnetic standing wave theory.The shape of the helical streamers and the characteristics of helical branches are quantitatively analyzed to further expand the application of plasma and streamer theory in the helix problem and chiral catalytic synthesis.
文摘Twenty-seven specimens were tested to investigate the uniaxial compression behaviour of an innovative standing support for underground space applications.The innovative standing support consisted of an external fibre reinforced polymer(FRP)jacket and the infill column made of cementitious grout,tailings and coal wash rejects.Effects of the FRP layers number and water to the cementitious grout(w/g)ratio were evaluated.Test results indicated that lower w/g ratios produced stronger infill columns.With FRP confinement,the standing support demonstrated strain-hardening loading characteristics with a significant improvement in both strength and ductility.The highest strength and strain of the specimens achieved was 58.4 MPa and 11.8%respectively.Compared with the unconfined specimens,the confinement with four FRP layers increased the specimen strength and associated strain up to 3.6 and 27.0 times respectively.A correlation between the compressive strength of the infill material and the ultrasonic pulse velocity was also investigated.Furthermore,a simple design-oriented model was proposed to predict the peak strength and the corresponding strain of the innovative standing support.
基金the Sino-German Cooperation Forestry Major Scientific Research Project(zdczhz2021ky09)the National Natural Science Foundation of China(31971487 and 42277245).
文摘Thinning is an effective management step for sustainable forest development,yet less attention is paid to the restoration of soil microbiota after thinning.In this study,both abundant and rare soil microbial communities(i.e.,bacterial,fungal),were evaluated under various thinning treatments in a mixed stand of Cunninghamia lanceolata and Sassafras tzumu using Mi Seq sequencing.Thinning did not significantly change either abundant or rare bacterial and fungal community composition,but affected their alpha diversity.The Shannon–Wiener indexes of rare fungal taxa under medium thinning were significantly lower than in the light thinning(P<0.05 level).Xanthobacteraceae dominated the abundant bacterial taxa,and Saitozyma and Mortierlla the abundant fungal taxa.The most common rare bacterial taxa varied;there was no prevalent rare fungal taxa under different thinnings.In addition,soil available nitrogen,total phosphorus,and p H had significant effects on rare bacterial taxa.Nutrients,especially available phosphorus,but not nitrogen,affected abundant and rare soil fungi.The results indicate that soil properties rather than plant factors affect abundant and rare microbial communities in soils of mixed stands.Thinning,through mediating soil properties,influences both abundant and rare bacterial and fungal communities in the mixed C.lanceolata and S.tzumu stand.
基金This research is related to the project GO NEWTON“Agroforestry Network in Tuscany”,financed by the Tuscany Region through the Measure 16.2 of Rural Development Plan 2014-2020 to promote agroforestry systems by spreading knowledge to farmers and promoting innovation in the Tuscan territory.
文摘On an agrosilvopastoral farm in central Italy where Maremmana cattle graze in Turkey oak forests,we evaluated the impact of different livestock densities on stand structure,tree diversity and natural regeneration in four types of grazed areas based on the grazing regime adopted:calf-grazed,high-intensity-grazed,low-intensity-grazed,ungrazed control.For each area,we set up three permanent circular plots(radius of 15 m)to survey the structural and dasometric characteristics of the overstorey,understorey,and regeneration layer.The results showed that grazing negatively affected the complexity of the forest structure and its potential to regenerate and maintain a high level of biodiversity.The differences in stand structure observed between the grazing areas were closely related to livestock density.The most sensitive components of the system were the understorey and the regeneration layers.Contrarily,the current grazing management did not affect the dominant tree structure or its composition.Our findings identified medium-term monitoring and regeneration management as the two significant aspects to consider when assessing sustainable livestock.New forests can be established by excluding graz-ing for about 20–25 years.
基金funded by the Fundamental Research Funds of Chinese Academy of Forestry(CAF)(CAFYBB2020QD002-2).
文摘Land use change affects the balance of organic carbon(C)reserves and the global C cycle.Microbial residues are essential constituents of stable soil organic C(SOC).However,it remains unclear how microbial residue changes over time following afforestation.In this study,16-,23-,52-,and 62-year-old Mongolian pine stands and 16-year-old cropland were studied in the Horqin Sandy Land,China.We analyzed changes in SOC,amino sugar content,and microbial parameters to assess how microbial communities influence soil C transformation and preservation.The results showed that SOC storage increased with stand age in the early stage of afforestation but remained unchanged at about 1.27-1.29 kg/m2 after 52 a.Moreover,there were consistent increases in amino sugars and microbial residues with increasing stand age.As stand age increased from 16 to 62 a,soil pH decreased from 6.84 to 5.71,and the concentration of total amino sugars increased from 178.53 to 509.99 mg/kg.A significant negative correlation between soil pH and the concentration of specific and total amino sugars was observed,indicating that the effects of soil acidification promote amino sugar stabilization during afforestation.In contrast to the Mongolian pine plantation of the same age,the cropland accumulated more SOC and microbial residues because of fertilizer application.Across Mongolian pine plantation with different ages,there was no significant change in calculated contribution of bacterial or fungal residues to SOC,suggesting that fungi were consistently the dominant contributors to SOC with increasing time.Our results indicate that afforestation in the Horqin Sandy Land promotes efficient microbial growth and residue accumulation in SOC stocks and has a consistent positive impact on SOC persistence.
基金Mengxi Wang holds a doctoral scholarship from the China scholarship council(CSC:202003270025)。
文摘Vertical forest structure is closely linked to multiple ecosystem characteristics,such as biodiversity,habitat,and productivity.Mixing tree species in planted forests has the potential to create diverse vertical forest structures due to the different physiological and morphological traits of the composing tree species.However,the relative importance of species richness,species identity and species interactions for the variation in vertical forest structure remains unclear,mainly because traditional forest inventories do not observe vertical stand structure in detail.Terrestrial laser scanning(TLS),however,allows to study vertical forest structure in an unprecedented way.Therefore,we used TLS single scan data from 126 plots across three experimental planted forests of a largescale tree diversity experiment in Belgium to study the drivers of vertical forest structure.These plots were 9–11years old young pure and mixed forests,characterized by four levels of tree species richness ranging from monocultures to four-species mixtures,across twenty composition levels.We generated vertical plant profiles from the TLS data and derived six stand structural variables.Linear mixed models were used to test the effect of species richness on structural variables.Employing a hierarchical diversity interaction modelling framework,we further assessed species identity effect and various species interaction effects on the six stand structural variables.Our results showed that species richness did not significantly influence most of the stand structure variables,except for canopy height and foliage height diversity.Species identity on the other hand exhibited a significant impact on vertical forest structure across all sites.Species interaction effects were observed to be site-dependent due to varying site conditions and species pools,and rapidly growing tree species tend to dominate these interactions.Overall,our results highlighted the importance of considering both species identity and interaction effects in choosing suitable species combinations for forest management practices aimed at enhancing vertical forest structure.
文摘Forest management planning often relies on Airborne Laser Scanning(ALS)-based Forest Management Inventories(FMIs)for sustainable and efficient decision-making.Employing the area-based(ABA)approach,these inventories estimate forest characteristics for grid cell areas(pixels),which are then usually summarized at the stand level.Using the ALS-based high-resolution Norwegian Forest Resource Maps(16 m×16 m pixel resolution)alongside with stand-level growth and yield models,this study explores the impact of three levels of pixel aggregation(standlevel,stand-level with species strata,and pixel-level)on projected stand development.The results indicate significant differences in the projected outputs based on the aggregation level.Notably,the most substantial difference in estimated volume occurred between stand-level and pixel-level aggregation,ranging from-301 to+253 m^(3)·ha^(-1)for single stands.The differences were,on average,higher for broadleaves than for spruce and pine dominated stands,and for mixed stands and stands with higher variability than for pure and homogenous stands.In conclusion,this research underscores the critical role of input data resolution in forest planning and management,emphasizing the need for improved data collection practices to ensure sustainable forest management.
文摘The presented work examines the mechanism and conditions of self-motion in bodies as systems of interacting elements. It is shown how the oscillation parameters of these elements determine the mode of motion of the system (body). In this case, the motion is considered as a consequence of symmetry breaking of forces in the systems themselves, and not as a reaction of individual elements to external influences. It is shown that such a violation takes place both in the gravitational field and when the system moves by inertia. Examples of the influence of changes in phase (φ) and frequency (f) parameters of the system elements on the velocity mode of its motion in space are considered. The identity of the causes of self-motion is revealed both in the case of gravitation and inertial motion.
基金Supported by Hunan Province Science and Technology Plan Project(2019SK2336,2019sfq21,2021SFQ19)Hunan Forestry Science and Technology Plan Project(OT-S-KTA5,2024YBC15).
文摘Different forest stands in the Dongjiang Lake Reservoir area of Zixing were selected as the research objects to study the characteristics of runoff generation in different forest stands.The results showed that there was no significant difference in annual runoff among M3,M1,and M5,and no significant difference between each forest stand and the control.The order was M3(22.75 mm)>M1(21.77 mm)>M5(20.14 mm).Forest vegetation generates less runoff through vegetation restoration compared to the control,indicating that forest vegetation reconstruction and restoration are beneficial for soil and water conservation.
文摘Based on the investigation data of 12 Haloxylon ammodendron plots in the south edge of Gurbantunggut Desert, Fuzzy distribution was introduced into the study of Haloxylon ammodendron base diameter structure fitting according to the consistency between the characteristics of Fuzzy distribution function and the distribution series of cumulative percentage of stand base diameter, and the fitting precision and effect of Fuzzy distribution function were discussed. The root mean square error RMSE and determination coefficient R<sup>2</sup> values showed that Fuzzy-Γ<sub>1</sub>, Fuzzy-Γ<sub>2</sub>, Fuzzy-Γ<sub>3</sub>, Fuzzy-Γ<sub>4</sub> had good fitting performance, among which Fuzzy-Γ<sub>1</sub> had relatively high fitting precision, and its parameters were closely related to stand age and density, Fuzzy-Γ<sub>2</sub> distribution function was the second, and Fuzzy-Γ<sub>4</sub> distribution function had the worst fitting effect. By introducing a parameter c from the similarity of four distribution function formulas, a generalized Fuzzy distribution function Fuzzy-Γ<sub>5</sub> is obtained. This function shows the highest fitting accuracy. Most of the values of parameter c are near 1 or 2, which shows that the diameter distribution is mainly approximate to Fuzzy-Γ<sub>1</sub> and Fuzzy-Γ<sub>2</sub>.
文摘The origin of elementary particle mass is considered as a function of n-valued graviton quanta. To develop this concept we begin in a cold region of “empty space” comprised of only microscopic gravitons oscillating at angular frequency ω. From opposite directions enters a pair of stray protons. Upon colliding, heat and energy are released. Customarily, this phase and what follows afterward would be described by Quantum Chromodynamics (QCD). Instead, we argue for an intermediary step. One in which neighboring gravitons absorb discrete amounts of plane-wave energy. Captured by the graviton, the planewave becomes a standing wave, whereupon its electromagnetic energy densities are converted into gravitational quanta. Immediately thereafter an elementary particle is formed and emitted, having both mass and spin. From absorption to conversion to emission occurs in less than 3.7 × 10−16 s. During this basic unit of hybrid time, general relativity and quantum physics unite into a common set of physical laws. As additional stray protons collide the process continues. Over eons, vast regions of spacetime become populated with low-mass particles. These we recognize to be dark matter by its effects on large scale structures in the universe. Its counterpart, dark energy, arises when the conversion of gravitational quanta to particle emission is interrupted. This causes the gravitational quanta to be ejected. It is recognized by its large scale effects on the universe.
文摘如何在逆境中坚持不懈,将失败转化为通往成功的阶梯?让我们一起到文章中寻找答案!Life is like a big picture, and every part of it stands for a choice, a hard time,or a win. Making your own way isn't just about getting where you want to go;it's about keeping on trying, even when things get tough.
基金Funded by the National Basic Research Program (973 program) (No. 2011CB707602)the Digital Manufacturing Equipment and Technology National Key Laboratory,Huazhong University of Science and Technology (No. DMETKF2009002)National Sciences Foundation-Guangdong Natural Science Foundation,China (No.U0934004)
文摘A contact model for describing the contact mechanics between the stator and slider of the standing wave linear ultrasonic motor was presented. The proposed model starts from the assumption that the vibration characteristics of the stator is not affected by the contact process. A modified friction models was used to analyze the contact problems. Firstly, the dynamic normal contact force, interface friction force, and steady-state characteristics were analyzed. Secondly, the influences of the contact layer material, the dynamic characteristics of the stator, and the pre-load on motor performance were simulated. Finally, to validate the contact model, a linear ultrasonic motor based on in-plane modes was used as an example. The corresponding results show that a set of simulation of motor performances based on the proposed contact mechanism is in good agreement with experimental results. This model is helpful to understanding the operation principle of the standing wave linear motor and thus contributes to the design of these types of motor.
基金Projects(2007CB613701,2007CB613702)supported by the National Basic Research Program of ChinaProjects(50974037,50904018)supported by the National Natural Science Foundation of ChinaProject(NCET-08-0098)supported by the Program for New Century Excellent Talents in University of China
文摘It was attempted to enhance and accelerate the separation of oxidation inclusions from magnesium alloy melt by virtue of ultrasonic agglomeration technology.In order to investigate the feasibility and effectiveness of standing waves for ultrasonic purification of magnesium alloy melt,numerical simulation and relevant experiment were carried out.The numerical simulation was broken into two main aspects.On one hand,the ultrasonic field propagations within the cells with various shapes were characterized by numerical solutions of the wave equation and with a careful choice of geometry a nearly idealized standing wave field was finally obtained.On the other hand,within such a standing wave field the agglomeration behavior of oxidation inclusions in magnesium alloy melt was analyzed and discussed.The agglomeration time and agglomeration position of oxidation inclusions were predicted with numerical simulation method.The results show that the oxidation inclusions whose apparent densities are close to the density of the melt can agglomerate at wave nodes in a short time which to a great extent enhances and accelerates the separation of oxidation inclusions from magnesium alloy melt.