The sound absorption coefficients of wood and wood boards for five eucalypt species (Eucalyptus urophylla, Euca-lyptus urophylla E. grandis, Eucalyptus urophylla E. tereticornis, Eucalyptus urophylla E. camaldulensis ...The sound absorption coefficients of wood and wood boards for five eucalypt species (Eucalyptus urophylla, Euca-lyptus urophylla E. grandis, Eucalyptus urophylla E. tereticornis, Eucalyptus urophylla E. camaldulensis and Eucalyptus cloeziana) that were collected from plantation in Dongmen Forestry Center of Guangxi Province, China were tested with stand-ing wave method and their sound absorption properties were also compared. The results showed that the sound absorption co-efficients of the five eucalypt wood species did not change evidently below 1000 Hz, but above 1000 Hz their sound absorption coefficients increased with the increasing frequency. The difference in sound absorption coefficient among five species of eucalypt wood is not evident at the tested frequency range (200-2000 Hz), but the sound absorption property of Eucalyptus urophylla at low frequency is better than that of other four species. The sound absorption coefficient of the tangential-sawn board is higher than that of the radial-sawn board. The sound absorption property of eucalypt wood of 0.5 cm in thickness is much better than that of 1.0 cm in thickness. It is concluded that wood sound absorption properties of eucalypts are affected by their board thickness and the type of sawn timber within the testing frequency, but the variance of wood sound absorption property among the five tested species is not significant.展开更多
文摘The sound absorption coefficients of wood and wood boards for five eucalypt species (Eucalyptus urophylla, Euca-lyptus urophylla E. grandis, Eucalyptus urophylla E. tereticornis, Eucalyptus urophylla E. camaldulensis and Eucalyptus cloeziana) that were collected from plantation in Dongmen Forestry Center of Guangxi Province, China were tested with stand-ing wave method and their sound absorption properties were also compared. The results showed that the sound absorption co-efficients of the five eucalypt wood species did not change evidently below 1000 Hz, but above 1000 Hz their sound absorption coefficients increased with the increasing frequency. The difference in sound absorption coefficient among five species of eucalypt wood is not evident at the tested frequency range (200-2000 Hz), but the sound absorption property of Eucalyptus urophylla at low frequency is better than that of other four species. The sound absorption coefficient of the tangential-sawn board is higher than that of the radial-sawn board. The sound absorption property of eucalypt wood of 0.5 cm in thickness is much better than that of 1.0 cm in thickness. It is concluded that wood sound absorption properties of eucalypts are affected by their board thickness and the type of sawn timber within the testing frequency, but the variance of wood sound absorption property among the five tested species is not significant.