The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with un...The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment.展开更多
The dependences of spin wave resonance(SWR)frequency on the surface anisotropy field,interface exchange coupling,symmetry,biquadratic exchange(BQE)interaction,film thickness,and the external magnetic field in bilayer ...The dependences of spin wave resonance(SWR)frequency on the surface anisotropy field,interface exchange coupling,symmetry,biquadratic exchange(BQE)interaction,film thickness,and the external magnetic field in bilayer ferromagnetic films are theoretically analyzed by employing the linear spin wave approximation and Green’s function method.A remarkable increase of SWR frequency,except for energetically lower two modes,can be obtained in our model that takes the BQE interaction into account.Again,the effect of the external magnetic field on SWR frequency can be increased by increasing the biquadratic to interlayer exchange ratio.It has been identified that the BQE interaction is of utmost importance in improving the SWR frequency of the bilayer ferromagnetic films.In addition,for bilayer ferromagnetic films,the frequency gap between the energetically highest mode and lowest mode is found to increase by increasing the biquadratic to interlayer exchange ratio and film thickness and destroying the symmetry of the system.These results can be used to improve the understanding of magnetic properties in bilayer ferromagnetic films and thus may have prominent implications for future magnetic devices.展开更多
The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded...The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency.展开更多
The stochastic resonance behavior of coupled stochastic resonance(SR)system with time-delay under mass and frequency fluctuations was studied.Firstly,the approximate system model of the time-delay system was obtained ...The stochastic resonance behavior of coupled stochastic resonance(SR)system with time-delay under mass and frequency fluctuations was studied.Firstly,the approximate system model of the time-delay system was obtained by the theory of small time-delay approximation.Then,the random average method and Shapiro-Loginov algorithm were used to calculate the output amplitude ratio of the two subsystems.The simulation analysis shows that increasing the time-delay and the input signal amplitude appropriately can improve the output response of the system.Finally,the system is applied to bearing fault diagnosis and compared with the stochastic resonance system with random mass and random frequency.The experimental results show that the coupled SR system taking into account the actual effect of time-delay and couple can more effectively extract the frequency of the fault signal,and thus realizing the diagnosis of the fault signal,which has important engineering application value.展开更多
By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calcu...By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.展开更多
For surface gravity waves propagating over a horizontal bottom that consists of a patch of sinusoidal ripples,strong wave reflection occurs under the Bragg resonance condition.The critical wave frequency,at which the ...For surface gravity waves propagating over a horizontal bottom that consists of a patch of sinusoidal ripples,strong wave reflection occurs under the Bragg resonance condition.The critical wave frequency,at which the peak reflection coefficient is obtained,has been observed in both physical experiments and direct numerical simulations to be downshifted from the well-known theoretical prediction.It has long been speculated that the downshift may be attributed to higher-order rippled bottom and free-surface boundary effects,but the intrinsic mechanism remains unclear.By a regular perturbation analysis,we derive the theoretical solution of frequency downshift due to third-order nonlinear effects of both bottom and free-surface boundaries.It is found that the bottom nonlinearity plays the dominant role in frequency downshift while the free-surface nonlinearity actually causes frequency upshift.The frequency downshift/upshift has a quadratic dependence in the bottom/free-surface steepness.Polychromatic bottom leads to a larger frequency downshift relative to the monochromatic bottom.In addition,direct numerical simulations based on the high-order spectral method are conducted to validate the present theory.The theoretical solution of frequency downshift compares well with the numerical simulations and available experimental data.展开更多
Stochastic resonance system is subject to the restriction of small frequency parameter in weak signal detection,in order to solve this problem,a frequency modulated weak signal detection method based on stochastic res...Stochastic resonance system is subject to the restriction of small frequency parameter in weak signal detection,in order to solve this problem,a frequency modulated weak signal detection method based on stochastic resonance and genetic algorithm is presented in this paper. The frequency limit of stochastic resonance is eliminated by introducing carrier signal,which is multiplied with the measured signal to be injected in the stochastic resonance system,meanwhile,using genetic algorithm to optimize the carrier signal frequency,which determine the generated difference-frequency signal in the lowfrequency range,so as to achieve the stochastic resonance weak signal detection. Results showthat the proposed method is feasible and effective,which can significantly improve the output SNR of stochastic resonance,in addition,the system has the better self-adaptability,according to the operation result and output phenomenon,the unknown frequency of the signal to be measured can be obtained,so as to realize the weak signal detection of arbitrary frequency.展开更多
The modelling and determination of the geometric parameters of a solar cell are important data, which influence the evaluation of its performance under specific operating conditions, as well as its industrial developm...The modelling and determination of the geometric parameters of a solar cell are important data, which influence the evaluation of its performance under specific operating conditions, as well as its industrial development for a low cost. In this work, an n+/p/p+ crystalline silicon solar cell is studied under monochromatic illumination in modulation and placed in a constant magnetic field. The minority carriers’ diffusion coefficient (<em>D</em>(<em>ω</em>, <em>B</em>), in the (<em>p</em>) base leads to maximum values (Dmax) at resonance frequencies (<em>ωr</em>). These values are used in expressions of AC minority carriers recombination velocity (Sb(Dmax, H)) in the rear of the base, to extract the optimum thickness while solar cell is subjected to these specific conditions. Optimum thickness modelling relationships, depending respectively on Dmax, <em>ωr</em> and <em>B</em>, are then established, and will be data for industrial development of low-cost solar cells for specific use.展开更多
We study the dynamic behavior of a quartz crystal resonator (QCR) in thickness-shear vibrations with the upper surface covered by an array of micro-beams (MBs) under large deflection. Through taking into account t...We study the dynamic behavior of a quartz crystal resonator (QCR) in thickness-shear vibrations with the upper surface covered by an array of micro-beams (MBs) under large deflection. Through taking into account the continuous conditions of shear force and bending moment at the interface of MBs/resonator, dependences of frequency shift of the compound QCR system versus material parameter and geometrical parameter are illustrated in detail for nonlinear and linear vibrations. It is found that the frequency shift produces a little right (left) translation for increasing elastic modulus (length/radius ratio) of MBs. Moreover, the frequency right (left) translation distance caused by nonlinear deformation becomes more serious in the second-order mode than in the first-order one,展开更多
The small-current grounding fault in distribution network is hard to be located because of its weak fault features.To accurately locate the faults,the transient process is analyzed in this paper.Through the study we t...The small-current grounding fault in distribution network is hard to be located because of its weak fault features.To accurately locate the faults,the transient process is analyzed in this paper.Through the study we take that the main resonant frequency and its corresponding component is related to the fault distance.Based on this,a fault location method based on double-end wavelet energy ratio at the scale corresponding to the main resonant frequency is proposed.And back propagation neural network(BPNN)is selected to fit the non-linear relationship between the wavelet energy ratio and fault distance.The performance of this proposed method has been verified in different scenarios of a simulation model in PSCAD/EMTDC.展开更多
The purpose of this study is to examine optical spatial frequency spectroscopy analysis(SFSA)combined with visible resonance Raman(VRR)spectroscopic method,for thefirst time,to discriminate human brain metastases of l...The purpose of this study is to examine optical spatial frequency spectroscopy analysis(SFSA)combined with visible resonance Raman(VRR)spectroscopic method,for thefirst time,to discriminate human brain metastases of lung cancers adenocarcinoma(ADC)and squamous cell carcinoma(SCC)from normal tissues.A total of 31 label-free micrographic images of three type of brain tissues were obtained using a confocal micro-Raman spectroscopic system.VRR spectra of the corresponding samples were synchronously collected using excitation wavelength of 532 nm from the same sites of the tissues.Using SFSA method,the difference in the randomness of spatial frequency structures in the micrograph images was analyzed using Gaussian functionfitting.The standard deviations,calculated from the spatial frequencies of the micrograph images were then analyzed using support vector machine(SVM)classifier.The key VRR biomolecularfingerprints of carotenoids,tryptophan,amide II,lipids and proteins(methylene/methyl groups)were also analyzed using SVM classifier.All three types of brain tissues were identified with high accuracy in the two approaches with high correlation.The results show that SFSA–VRR can potentially be a dual-modal method to provide new criteria for identifying the three types of human brain tissues,which are on-site,real-time and label-free and may improve the accuracy of brain biopsy.展开更多
In this paper, an approach to the design of shielded radio-frequency (RF) phased-array coils for magnetic resonance imaging (MRI) is proposed. The target field method is used to find current densities distributed ...In this paper, an approach to the design of shielded radio-frequency (RF) phased-array coils for magnetic resonance imaging (MRI) is proposed. The target field method is used to find current densities distributed on primary and shield coils. The stream function technique is used to discretize current densities and to obtain the winding patterns of the coils. The corresponding highly ill-conditioned integral equation is solved by the Tikhonov regularization with a penalty function related to the minimum curvature. To balance the simplicity and smoothness with the homogeneity of the magnetic field of the coll's winding pattern, the selection of a penalty factor is discussed in detail.展开更多
As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation, the ME effect is significantly enhanced in the vicinity of resonance frequency. The be...As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation, the ME effect is significantly enhanced in the vicinity of resonance frequency. The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied, and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses. The experimental results show that with H dc increasing from 0 Oe (1 Oe=79.5775 A/m) to 700 Oe, the bending resonance frequency can be shifted in a range of 32.68 kHz≤fr≤33.96 kHz. In addition, with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm, the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz. This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite, which plays a guiding role in the ME composite design for real applications.展开更多
In 0.1 mol/L HCl medium, 12-tungstophosphoric(TP) acid reacted with matrine(Mat) and oxymatrine(Oxy) to form an ion-association complex. As a result, the new spectra of resonance Rayleigh scattering(RRS), seco...In 0.1 mol/L HCl medium, 12-tungstophosphoric(TP) acid reacted with matrine(Mat) and oxymatrine(Oxy) to form an ion-association complex. As a result, the new spectra of resonance Rayleigh scattering(RRS), second-order scattering(SOS) and frequency doubling scattering(FDS) appeared and their intensities were enhanced greatly. The maximum scattering wavelengths of RRS, SOS and FDS were located at 370, 670 and 390 nm, respectively. The in-crements of scattering intensity were directly proportional to the concentration of Mat and Oxy in a certain range. Based on this, the method for the determination of matrine and oxymatrine has been established. It has been applied to the determination of matrine and oxymatrine in samples of Radix sophorae flavescentis with satisfactory result. The reaction mechanism and reasons of RRS enhancement were discussed.展开更多
Considering a damped linear oscillator model subjected to a white noise with an inherent angular frequency and a periodic external driving force, we derive the analytic expression of the first moment of output respons...Considering a damped linear oscillator model subjected to a white noise with an inherent angular frequency and a periodic external driving force, we derive the analytic expression of the first moment of output response, and study the stochastic resonance phenomenon in a system. The results show that the output response of this system behaves as a simple harmonic vibration, of which the frequency is the same as the external driving frequency, and the variations of amplitude with the driving frequency and the inherent frequency present a bona fide stochastic resonance.展开更多
This paper presents an analytic method that adjusts resonance frequency of a piezoelectric vibration energy harvester. A mathematical model that estimates resonance frequency of cantilever is also proposed. Through mo...This paper presents an analytic method that adjusts resonance frequency of a piezoelectric vibration energy harvester. A mathematical model that estimates resonance frequency of cantilever is also proposed. Through moving an attached mass and changing its weight on the cantilever beam, resonance frequency of adopted piezoelectric device can be adjusted to match the frequency of ambient vibration sources, which is critical in order to harvest maximum amount of energy. The theoretical results are validated by experiments that move different masses along experimental cantilever beams. The results demonstrate that resonance frequency can be adjusted by an attached mass located at different positions on the cantilever beam. Different combinations of operational conditions that harvest maximum amount of energy are also discussed in this paper.展开更多
In this article, a novel designed radio frequency (RF) coil is designed and built for the imaging of puppies in a V-shape permanent magnetic resonance imaging (MRI) system. Two sets of Helmholtz coil pairs with a ...In this article, a novel designed radio frequency (RF) coil is designed and built for the imaging of puppies in a V-shape permanent magnetic resonance imaging (MRI) system. Two sets of Helmholtz coil pairs with a V-shape structure are used to improve the holding of an animal in the coil. The homogeneity and the sensitivity of the RF field in the coil are analysed by theoretical calculation. The size and the shape of the new coil are optimized and validated by simulation through using the finite element method (FEM). Good magnetic resonance (MR) images are achieved on a shepherd dog.展开更多
Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. T...Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. The theoretical results are obtained by the multiple-scales method. The steady state amplitudes for each resonance are plotted, showing the influence of the different parameters. Analysis for each figure is given. Approximate solution corresponding to each type of resonance is determined. Stability analyses are carried out for each case.展开更多
The collective behaviors of two coupled harmonic oscillators with dichotomous fluctuating frequency are investigated,including stability, synchronization, and stochastic resonance(SR). First, the synchronization condi...The collective behaviors of two coupled harmonic oscillators with dichotomous fluctuating frequency are investigated,including stability, synchronization, and stochastic resonance(SR). First, the synchronization condition of the system is obtained. When this condition is satisfied, the mean-field behavior is consistent with any single particle behavior in the system. On this basis, the stability condition and the exact steady-state solution of the system are derived. Comparative analysis shows that, the stability condition is stronger than the synchronization condition, that is to say, when the stability condition is satisfied, the system is both synchronous and stable. Simulation analysis indicates that increasing the coupling strength will reduce the synchronization time. In weak coupling region, there is an optimal coupling strength that maximizes the output amplitude gain(OAG), thus the coupling-induced SR behavior occurs. In strong coupling region, the two particles are bounded as a whole, so that the coupling effect gradually disappears.展开更多
We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital auto...We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital automatic frequency control circuit can be flexibly configured for different experimental conditions,such as the input powers or the quality factors of the resonator.The configurability makes the microwave source universally compatible and greatly extends its application.To demonstrate the ability of adapting to various experimental conditions,the microwave source is tested by varying the input powers and the quality factors of the resonator.A satisfactory phase noise as low as-135 d Bc/Hz at 100-k Hz offset from the center frequency is achieved,due to the use of a phase-locked dielectric resonator oscillator and a direct digital synthesizer.Continuous-wave electron paramagnetic resonance experiments are conducted to examine the performance of the microwave source.The outstanding performance shows a prospect of wide applications of the microwave source in numerous fields of science.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51901163 and 12104171)the Fundamental Research Funds for the Central Universities(Grant No.2021XXJS025).
文摘The flexible materials exhibit more favorable properties than most rigid substrates in flexibility,weight saving,mechanical reliability,and excellent environmental toughness.Particularly,flexible graphene film with unique mechanical properties was extensively explored in high frequency devices.Herein,we report the characteristics of structure and magnetic properties at high frequency of Co2FeAl thin film with different thicknesses grown on flexible graphene substrate at room temperature.The exciting finding for the columnar structure of Co2FeAl thin film lays the foundation for excellent high frequency property of Co2FeAl/flexible graphene structure.In-plane magnetic anisotropy field varying with increasing thickness of Co2FeAl thin film can be obtained by measurement of ferromagnetic resonance,which can be ascribed to the enhancement of crystallinity and the increase of grain size.Meanwhile,the resonance frequency which can be achieved by the measurement of vector network analyzer with the microstrip method increases with increasing thickness of Co2FeAl thin film.Moreover,in our case with graphene film,the resonance magnetic field is quite stable though folded for twenty cycles,which demonstrates that good flexibility of graphene film and the stability of high frequency magnetic property of Co2FeAl thin film grown on flexible graphene substrate.These results are promising for the design of microwave devices and wireless communication equipment.
基金the Natural Science Foundation of Inner Mongolia of China(Grant No.2019MS01021)the Research Program of Science and Technology at Universi-ties of Inner Mongolia Autonomous Region,China(Grant No.NJZY21454)the Theoretical Physics Discipline De-velopment and Communication Platform of Inner Mongolia University(Grant No.12147216).
文摘The dependences of spin wave resonance(SWR)frequency on the surface anisotropy field,interface exchange coupling,symmetry,biquadratic exchange(BQE)interaction,film thickness,and the external magnetic field in bilayer ferromagnetic films are theoretically analyzed by employing the linear spin wave approximation and Green’s function method.A remarkable increase of SWR frequency,except for energetically lower two modes,can be obtained in our model that takes the BQE interaction into account.Again,the effect of the external magnetic field on SWR frequency can be increased by increasing the biquadratic to interlayer exchange ratio.It has been identified that the BQE interaction is of utmost importance in improving the SWR frequency of the bilayer ferromagnetic films.In addition,for bilayer ferromagnetic films,the frequency gap between the energetically highest mode and lowest mode is found to increase by increasing the biquadratic to interlayer exchange ratio and film thickness and destroying the symmetry of the system.These results can be used to improve the understanding of magnetic properties in bilayer ferromagnetic films and thus may have prominent implications for future magnetic devices.
文摘The seismic behavior of a partially filled rigid rectangular liquid tank is investigated under short-and longduration ground motions.A finite element model is developed to analyze the liquid domain by using four-noded quadrilateral elements.The competency of the model is verified with the available results.Parametric studies are conducted for the dynamic parameters of the base-isolated tank,using a lead rubber bearing to evaluate the optimum damping and time period of the isolator.The application of base isolation has reduced the total and impulsive hydrodynamic components of pressure by 80 to 90 percent,and base shear by 15 to 95 percent,depending upon the frequency content and duration of the considered earthquakes.The sloshing amplitude of the base-isolated tank is reduced by 18 to 94 percent for most of the short-duration earthquakes,while it is increased by 17 to 60 percent for the majority of the long-duration earthquakes.Furthermore,resonance studies are carried out through a long-duration harmonic excitation to obtain the dynamic behavior of non-isolated and isolated tanks,using a nonlinear sloshing model.The seismic responses of the base-isolated tank are obtained as higher when the excitation frequency matches the fundamental sloshing frequency rather than the isolator frequency.
基金Project(61771085)supported by the National Natural Science Foundation of ChinaProject(KJQN 201900601)supported by the Research Project of Chongqing Educational Commission,China。
文摘The stochastic resonance behavior of coupled stochastic resonance(SR)system with time-delay under mass and frequency fluctuations was studied.Firstly,the approximate system model of the time-delay system was obtained by the theory of small time-delay approximation.Then,the random average method and Shapiro-Loginov algorithm were used to calculate the output amplitude ratio of the two subsystems.The simulation analysis shows that increasing the time-delay and the input signal amplitude appropriately can improve the output response of the system.Finally,the system is applied to bearing fault diagnosis and compared with the stochastic resonance system with random mass and random frequency.The experimental results show that the coupled SR system taking into account the actual effect of time-delay and couple can more effectively extract the frequency of the fault signal,and thus realizing the diagnosis of the fault signal,which has important engineering application value.
基金supported by the Key Project Scientific Research Foundation from the Education Department of Hubei Province of China(Grant No D200725001)
文摘By adding frequency modulated signals to the intensity equation of gain noise model of the single-mode laser driven by two coloured noises which are correlated, this paper uses the linear approximation method to calculate the power spectrum and signal-to-noise ratio (SNR) of the laser intensity. The results show that the SNR appears typical stochastic resonance with the variation of intensity of the pump noise and quantum noise. As the amplitude of a modulated signal has effects on the SNR, it shows suppression, monotone increasing, stochastic resonance, and multiple stochastic resonance with the variation of the frequency of a carrier signal and modulated signal.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. U1706230 and51379071)the Key Project of NSFC-Shandong Joint Research Funding POW3C (Grant No. U1906230)the National Science Fund for Distinguished Young Scholars (Grant No. 51425901)
文摘For surface gravity waves propagating over a horizontal bottom that consists of a patch of sinusoidal ripples,strong wave reflection occurs under the Bragg resonance condition.The critical wave frequency,at which the peak reflection coefficient is obtained,has been observed in both physical experiments and direct numerical simulations to be downshifted from the well-known theoretical prediction.It has long been speculated that the downshift may be attributed to higher-order rippled bottom and free-surface boundary effects,but the intrinsic mechanism remains unclear.By a regular perturbation analysis,we derive the theoretical solution of frequency downshift due to third-order nonlinear effects of both bottom and free-surface boundaries.It is found that the bottom nonlinearity plays the dominant role in frequency downshift while the free-surface nonlinearity actually causes frequency upshift.The frequency downshift/upshift has a quadratic dependence in the bottom/free-surface steepness.Polychromatic bottom leads to a larger frequency downshift relative to the monochromatic bottom.In addition,direct numerical simulations based on the high-order spectral method are conducted to validate the present theory.The theoretical solution of frequency downshift compares well with the numerical simulations and available experimental data.
基金supported by the National Natural Science Foundation of China (Grant No. 61072133)the Production,Learning and Research Joint Innovation Program of Jiangsu Province,China (Grant Nos. BY2013007-02,SBY201120033)+2 种基金the Industrialization of Research Findings Promotion Program of Institution of Higher Education of Jiangsu Province,China (Grant No. JHB2011-15)the advantage discipline platform "information and Communication Engineering" of Jiangsu Province,Chinathe "Summit of the Six Top Talents" Program of Jiangsu Province,China
文摘Stochastic resonance system is subject to the restriction of small frequency parameter in weak signal detection,in order to solve this problem,a frequency modulated weak signal detection method based on stochastic resonance and genetic algorithm is presented in this paper. The frequency limit of stochastic resonance is eliminated by introducing carrier signal,which is multiplied with the measured signal to be injected in the stochastic resonance system,meanwhile,using genetic algorithm to optimize the carrier signal frequency,which determine the generated difference-frequency signal in the lowfrequency range,so as to achieve the stochastic resonance weak signal detection. Results showthat the proposed method is feasible and effective,which can significantly improve the output SNR of stochastic resonance,in addition,the system has the better self-adaptability,according to the operation result and output phenomenon,the unknown frequency of the signal to be measured can be obtained,so as to realize the weak signal detection of arbitrary frequency.
文摘The modelling and determination of the geometric parameters of a solar cell are important data, which influence the evaluation of its performance under specific operating conditions, as well as its industrial development for a low cost. In this work, an n+/p/p+ crystalline silicon solar cell is studied under monochromatic illumination in modulation and placed in a constant magnetic field. The minority carriers’ diffusion coefficient (<em>D</em>(<em>ω</em>, <em>B</em>), in the (<em>p</em>) base leads to maximum values (Dmax) at resonance frequencies (<em>ωr</em>). These values are used in expressions of AC minority carriers recombination velocity (Sb(Dmax, H)) in the rear of the base, to extract the optimum thickness while solar cell is subjected to these specific conditions. Optimum thickness modelling relationships, depending respectively on Dmax, <em>ωr</em> and <em>B</em>, are then established, and will be data for industrial development of low-cost solar cells for specific use.
基金supported by the National Natural Science Foundation of China(11272127 and 51435006)the Research Fund for the Doctoral Program of Higher Education of China(20130142110022)
文摘We study the dynamic behavior of a quartz crystal resonator (QCR) in thickness-shear vibrations with the upper surface covered by an array of micro-beams (MBs) under large deflection. Through taking into account the continuous conditions of shear force and bending moment at the interface of MBs/resonator, dependences of frequency shift of the compound QCR system versus material parameter and geometrical parameter are illustrated in detail for nonlinear and linear vibrations. It is found that the frequency shift produces a little right (left) translation for increasing elastic modulus (length/radius ratio) of MBs. Moreover, the frequency right (left) translation distance caused by nonlinear deformation becomes more serious in the second-order mode than in the first-order one,
基金supported by National Key R&D Program of China(2017YFB0902800)Science and 333 Technology Project of State Grid Corporation of China(52094017003D).
文摘The small-current grounding fault in distribution network is hard to be located because of its weak fault features.To accurately locate the faults,the transient process is analyzed in this paper.Through the study we take that the main resonant frequency and its corresponding component is related to the fault distance.Based on this,a fault location method based on double-end wavelet energy ratio at the scale corresponding to the main resonant frequency is proposed.And back propagation neural network(BPNN)is selected to fit the non-linear relationship between the wavelet energy ratio and fault distance.The performance of this proposed method has been verified in different scenarios of a simulation model in PSCAD/EMTDC.
基金This research is supported by The Air Force Medical Center,China and in part of The Institute for Ultrafast Spectroscopy and Lasers(IUSL),the City College of the City University of New York.The authors would like to thank Mr.C.Y.Zhang,Mr.M.Z.Fan and Dr.X.H.Ni for their assistance in the experiments and suggestions concerning this paper.
文摘The purpose of this study is to examine optical spatial frequency spectroscopy analysis(SFSA)combined with visible resonance Raman(VRR)spectroscopic method,for thefirst time,to discriminate human brain metastases of lung cancers adenocarcinoma(ADC)and squamous cell carcinoma(SCC)from normal tissues.A total of 31 label-free micrographic images of three type of brain tissues were obtained using a confocal micro-Raman spectroscopic system.VRR spectra of the corresponding samples were synchronously collected using excitation wavelength of 532 nm from the same sites of the tissues.Using SFSA method,the difference in the randomness of spatial frequency structures in the micrograph images was analyzed using Gaussian functionfitting.The standard deviations,calculated from the spatial frequencies of the micrograph images were then analyzed using support vector machine(SVM)classifier.The key VRR biomolecularfingerprints of carotenoids,tryptophan,amide II,lipids and proteins(methylene/methyl groups)were also analyzed using SVM classifier.All three types of brain tissues were identified with high accuracy in the two approaches with high correlation.The results show that SFSA–VRR can potentially be a dual-modal method to provide new criteria for identifying the three types of human brain tissues,which are on-site,real-time and label-free and may improve the accuracy of brain biopsy.
基金Project supported by the National Nature Science Foundation of China (Grant No. 30900332)Grant of General Administration of Quality Supervision Inspection and Quarantine of China (Grant No. 201210079)+1 种基金the Program for Science and Technology Department of Zhejiang Province, China (Grant Nos. 2010C14010 and 2010C33172)the Natural Science Foundation of Zhejiang Province, China (Grant No. Y2090966)
文摘In this paper, an approach to the design of shielded radio-frequency (RF) phased-array coils for magnetic resonance imaging (MRI) is proposed. The target field method is used to find current densities distributed on primary and shield coils. The stream function technique is used to discretize current densities and to obtain the winding patterns of the coils. The corresponding highly ill-conditioned integral equation is solved by the Tikhonov regularization with a penalty function related to the minimum curvature. To balance the simplicity and smoothness with the homogeneity of the magnetic field of the coll's winding pattern, the selection of a penalty factor is discussed in detail.
基金the National Natural Science Foundation of China(Grant Nos.50830202 and 61071042)the National High Technology Research and Development Program of China(Grant No.2012AA040602)
文摘As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation, the ME effect is significantly enhanced in the vicinity of resonance frequency. The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied, and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses. The experimental results show that with H dc increasing from 0 Oe (1 Oe=79.5775 A/m) to 700 Oe, the bending resonance frequency can be shifted in a range of 32.68 kHz≤fr≤33.96 kHz. In addition, with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm, the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz. This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite, which plays a guiding role in the ME composite design for real applications.
基金Supported by the National Natural Science Foundation of China(No.20875078)
文摘In 0.1 mol/L HCl medium, 12-tungstophosphoric(TP) acid reacted with matrine(Mat) and oxymatrine(Oxy) to form an ion-association complex. As a result, the new spectra of resonance Rayleigh scattering(RRS), second-order scattering(SOS) and frequency doubling scattering(FDS) appeared and their intensities were enhanced greatly. The maximum scattering wavelengths of RRS, SOS and FDS were located at 370, 670 and 390 nm, respectively. The in-crements of scattering intensity were directly proportional to the concentration of Mat and Oxy in a certain range. Based on this, the method for the determination of matrine and oxymatrine has been established. It has been applied to the determination of matrine and oxymatrine in samples of Radix sophorae flavescentis with satisfactory result. The reaction mechanism and reasons of RRS enhancement were discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11045004)the Key Program of the Scientific Research Foundation of the Education Bureau of Hubei Province,Chain(Grant No.D20101506)
文摘Considering a damped linear oscillator model subjected to a white noise with an inherent angular frequency and a periodic external driving force, we derive the analytic expression of the first moment of output response, and study the stochastic resonance phenomenon in a system. The results show that the output response of this system behaves as a simple harmonic vibration, of which the frequency is the same as the external driving frequency, and the variations of amplitude with the driving frequency and the inherent frequency present a bona fide stochastic resonance.
文摘This paper presents an analytic method that adjusts resonance frequency of a piezoelectric vibration energy harvester. A mathematical model that estimates resonance frequency of cantilever is also proposed. Through moving an attached mass and changing its weight on the cantilever beam, resonance frequency of adopted piezoelectric device can be adjusted to match the frequency of ambient vibration sources, which is critical in order to harvest maximum amount of energy. The theoretical results are validated by experiments that move different masses along experimental cantilever beams. The results demonstrate that resonance frequency can be adjusted by an attached mass located at different positions on the cantilever beam. Different combinations of operational conditions that harvest maximum amount of energy are also discussed in this paper.
基金supported by the National Key Technology Research and Development Program of China (Grant No. 001BA210A03)
文摘In this article, a novel designed radio frequency (RF) coil is designed and built for the imaging of puppies in a V-shape permanent magnetic resonance imaging (MRI) system. Two sets of Helmholtz coil pairs with a V-shape structure are used to improve the holding of an animal in the coil. The homogeneity and the sensitivity of the RF field in the coil are analysed by theoretical calculation. The size and the shape of the new coil are optimized and validated by simulation through using the finite element method (FEM). Good magnetic resonance (MR) images are achieved on a shepherd dog.
文摘Harmonic, subharmonic, superharmonic, simultaneous sub/super harmonic, and combination resonances of the additive type of self-excited two coupled-second order systems to multi-frequency excitation are investigated. The theoretical results are obtained by the multiple-scales method. The steady state amplitudes for each resonance are plotted, showing the influence of the different parameters. Analysis for each figure is given. Approximate solution corresponding to each type of resonance is determined. Stability analyses are carried out for each case.
基金supported by the National Natural Science Foundation of China for the Youth (Grant Nos. 11501385 and 11801385)。
文摘The collective behaviors of two coupled harmonic oscillators with dichotomous fluctuating frequency are investigated,including stability, synchronization, and stochastic resonance(SR). First, the synchronization condition of the system is obtained. When this condition is satisfied, the mean-field behavior is consistent with any single particle behavior in the system. On this basis, the stability condition and the exact steady-state solution of the system are derived. Comparative analysis shows that, the stability condition is stronger than the synchronization condition, that is to say, when the stability condition is satisfied, the system is both synchronous and stable. Simulation analysis indicates that increasing the coupling strength will reduce the synchronization time. In weak coupling region, there is an optimal coupling strength that maximizes the output amplitude gain(OAG), thus the coupling-induced SR behavior occurs. In strong coupling region, the two particles are bounded as a whole, so that the coupling effect gradually disappears.
基金Project supported by the Chinese Academy of Sciences(Grant Nos.XDC07000000 and GJJSTD20200001)Hefei Comprehensive National Science CenterYouth Innovation Promotion Association of Chinese Academy of Sciences for the support。
文摘We report a new design of microwave source for X-band electron paramagnetic resonance spectrometer.The microwave source is equipped with a digital automatic frequency control circuit.The parameters of the digital automatic frequency control circuit can be flexibly configured for different experimental conditions,such as the input powers or the quality factors of the resonator.The configurability makes the microwave source universally compatible and greatly extends its application.To demonstrate the ability of adapting to various experimental conditions,the microwave source is tested by varying the input powers and the quality factors of the resonator.A satisfactory phase noise as low as-135 d Bc/Hz at 100-k Hz offset from the center frequency is achieved,due to the use of a phase-locked dielectric resonator oscillator and a direct digital synthesizer.Continuous-wave electron paramagnetic resonance experiments are conducted to examine the performance of the microwave source.The outstanding performance shows a prospect of wide applications of the microwave source in numerous fields of science.