A numerical study of a standing-wave thermoacoustic engine is presented. The aim of this work is to study the effect of increasing the heat exchangers length on the acoustic power. The analysis of the flow and the pre...A numerical study of a standing-wave thermoacoustic engine is presented. The aim of this work is to study the effect of increasing the heat exchangers length on the acoustic power. The analysis of the flow and the prediction of the heat transfer are performed by solving the non linear unsteady Navier-Stocks equations using the finite volume method implemented in -ANSYS CFX- CFD code. The results show an increase in the limit cycle acoustic pressure and power as well as the specific work per cycle with the increase of heat exchangers length.展开更多
This paper presents the development and assessment of two low-cost, travelling wave, thermoacoustic generators operating by waste heat energy from cooking stove. One powered by waste heat from a propane-driven stove, ...This paper presents the development and assessment of two low-cost, travelling wave, thermoacoustic generators operating by waste heat energy from cooking stove. One powered by waste heat from a propane-driven stove, the other powered by waste heat from a wood-burning stove. The propane-driven thermoacoustic generator was successfully demonstrated to produce approximately 15 watts of electricity using a commercial audio loudspeaker. The wood-burning thermoacoustic generator was successfully constructed and tested to generate a maximum of 22.7 watts of electricity under a pressurised condition. The latter has a high potential to be used by over 1.5 billion people in rural communities for applications such as LED lighting, charging mobile phones or charging a 12V battery. A comprehensive power assessment of the propane-driving generator as well as the development and performance assessment of the wood-burning generator are described throughout this article.展开更多
The standing-wave thermoacoustic engines(TAE)are applied in practice to convert thermal power into acoustic one to generate electricity or to drive cooling devices.Although there is a number of existing numerical rese...The standing-wave thermoacoustic engines(TAE)are applied in practice to convert thermal power into acoustic one to generate electricity or to drive cooling devices.Although there is a number of existing numerical researches that provides a design tool for predicting standing-wave TAE performances,few existing works that compare TAE driven by cryogenic liquids and waste heat,and optimize its performance by varying the stack plate spacing.This present work is primarily concerned with the numerical investigation of the performance of TAEs driven by cryogenic liquids and waste heat.For this,three-dimensional(3-D)standing-wave TAE models are developed.Mesh-and time-independence studies are conducted first.Model validations are then performed by comparing with the numerical results available in the literature.The validated model is then applied to simulate the standing-wave TAEs driven by the cryogenic liquids and the waste heat,as the temperature gradientΔT is varied.It is found that limit cycle oscillations in both systems are successfully generated and the oscillations amplitude is increased with increasedΔT.Nonlinearity is identified with acoustic streaming and the flow reversal occurring through the stack.Comparison studied are then conducted between the cryogenic liquid-driven TAE and that driven by waste heat in the presence of the same temperature gradientΔT.It is shown that the limit cycle frequency of the cryogenic liquid system is 4.72%smaller and the critical temperatureΔT_(cri)=131 K is lower than that of the waste heat system(ΔT_(cri)=187 K).Furthermore,the acoustic power is increased by 31%and the energy conversion efficiency is found to increase by 0.42%.Finally,optimization studies on the stack plate spacing are conducted in TAE system driven by cryogenic liquids.It is found that the limit cycle oscillation frequency is increased with the decreased ratio between the stack plate spacing and the heat penetration depth.When the ratio is set to between 2 and 3,the overall performance of the cryogenic liquid-driven TAE has been greatly improved.In summary,the present model can be used as a design tool to evaluate standing-wave TAE performances with detailed thermodynamics and acoustics characteristics.The present findings provide useful guidance for the design and optimization of high-efficiency standing-wave TAE for recovering low-temperature fluids or heat sources.展开更多
Onset mechanism is one of the most fundamental issues in thermoacoustic field.However,the onset conditions and the phenomena happening in the onset process have not been well explained theoretically.In this paper,a no...Onset mechanism is one of the most fundamental issues in thermoacoustic field.However,the onset conditions and the phenomena happening in the onset process have not been well explained theoretically.In this paper,a novel model based on the circuit network analogy is proposed to predict the onset temperature of a standing-wave thermoacoustic engine.The activity and instability criteria are proposed to be the onset criteria in the model.The influences of the porosity of the heat exchanger and the stack,and the length of the resonant tube on the onset temperature are analyzed.The calculated results are in agreement with the experimental results,which indicates that the activity and instability criteria can be used to predict the onset conditions of a thermoacoustic engine.展开更多
The reported discrepancy between theory and experiment for external combustion Stirling engines is explained by the addition of thermal resistance of the combustion gasses to the standard Carnot model. In these cases,...The reported discrepancy between theory and experiment for external combustion Stirling engines is explained by the addition of thermal resistance of the combustion gasses to the standard Carnot model. In these cases, the Stirling engine ideal efficiency is not as is normally reported equal to the Carnot cycle efficiency but is significantly lower. A new equation for ideal Stirling engine efficiency when the heat is obtained through external combustion without pre-heating the air, is presented and results for various fuels tabulated. The results show that petrol and diesel, internal combustion engines (Otto cycle) have a higher ideal efficiency than the Stirling engine. When comparing thermoacoustic engines heated by wood, efficiency should not be quoted as a percentage of the Carnot efficiency, but against a figure 48% lower than Carnot. The effect is not seen with electrically heated rigs, solar or nuclear fission heated engines.展开更多
文摘A numerical study of a standing-wave thermoacoustic engine is presented. The aim of this work is to study the effect of increasing the heat exchangers length on the acoustic power. The analysis of the flow and the prediction of the heat transfer are performed by solving the non linear unsteady Navier-Stocks equations using the finite volume method implemented in -ANSYS CFX- CFD code. The results show an increase in the limit cycle acoustic pressure and power as well as the specific work per cycle with the increase of heat exchangers length.
文摘This paper presents the development and assessment of two low-cost, travelling wave, thermoacoustic generators operating by waste heat energy from cooking stove. One powered by waste heat from a propane-driven stove, the other powered by waste heat from a wood-burning stove. The propane-driven thermoacoustic generator was successfully demonstrated to produce approximately 15 watts of electricity using a commercial audio loudspeaker. The wood-burning thermoacoustic generator was successfully constructed and tested to generate a maximum of 22.7 watts of electricity under a pressurised condition. The latter has a high potential to be used by over 1.5 billion people in rural communities for applications such as LED lighting, charging mobile phones or charging a 12V battery. A comprehensive power assessment of the propane-driving generator as well as the development and performance assessment of the wood-burning generator are described throughout this article.
基金the financial support (452DISDZ) from University of Canterbury, New ZealandUniversity of Canterbury for providing PhD scholarship。
文摘The standing-wave thermoacoustic engines(TAE)are applied in practice to convert thermal power into acoustic one to generate electricity or to drive cooling devices.Although there is a number of existing numerical researches that provides a design tool for predicting standing-wave TAE performances,few existing works that compare TAE driven by cryogenic liquids and waste heat,and optimize its performance by varying the stack plate spacing.This present work is primarily concerned with the numerical investigation of the performance of TAEs driven by cryogenic liquids and waste heat.For this,three-dimensional(3-D)standing-wave TAE models are developed.Mesh-and time-independence studies are conducted first.Model validations are then performed by comparing with the numerical results available in the literature.The validated model is then applied to simulate the standing-wave TAEs driven by the cryogenic liquids and the waste heat,as the temperature gradientΔT is varied.It is found that limit cycle oscillations in both systems are successfully generated and the oscillations amplitude is increased with increasedΔT.Nonlinearity is identified with acoustic streaming and the flow reversal occurring through the stack.Comparison studied are then conducted between the cryogenic liquid-driven TAE and that driven by waste heat in the presence of the same temperature gradientΔT.It is shown that the limit cycle frequency of the cryogenic liquid system is 4.72%smaller and the critical temperatureΔT_(cri)=131 K is lower than that of the waste heat system(ΔT_(cri)=187 K).Furthermore,the acoustic power is increased by 31%and the energy conversion efficiency is found to increase by 0.42%.Finally,optimization studies on the stack plate spacing are conducted in TAE system driven by cryogenic liquids.It is found that the limit cycle oscillation frequency is increased with the decreased ratio between the stack plate spacing and the heat penetration depth.When the ratio is set to between 2 and 3,the overall performance of the cryogenic liquid-driven TAE has been greatly improved.In summary,the present model can be used as a design tool to evaluate standing-wave TAE performances with detailed thermodynamics and acoustics characteristics.The present findings provide useful guidance for the design and optimization of high-efficiency standing-wave TAE for recovering low-temperature fluids or heat sources.
基金supported by the National Funds for Distinguished Young Scientists of China (Grant No. 50825601)partly by the National Basic Research Program of China ("973" Program) (Grant No. 2010CB-227303)
文摘Onset mechanism is one of the most fundamental issues in thermoacoustic field.However,the onset conditions and the phenomena happening in the onset process have not been well explained theoretically.In this paper,a novel model based on the circuit network analogy is proposed to predict the onset temperature of a standing-wave thermoacoustic engine.The activity and instability criteria are proposed to be the onset criteria in the model.The influences of the porosity of the heat exchanger and the stack,and the length of the resonant tube on the onset temperature are analyzed.The calculated results are in agreement with the experimental results,which indicates that the activity and instability criteria can be used to predict the onset conditions of a thermoacoustic engine.
文摘The reported discrepancy between theory and experiment for external combustion Stirling engines is explained by the addition of thermal resistance of the combustion gasses to the standard Carnot model. In these cases, the Stirling engine ideal efficiency is not as is normally reported equal to the Carnot cycle efficiency but is significantly lower. A new equation for ideal Stirling engine efficiency when the heat is obtained through external combustion without pre-heating the air, is presented and results for various fuels tabulated. The results show that petrol and diesel, internal combustion engines (Otto cycle) have a higher ideal efficiency than the Stirling engine. When comparing thermoacoustic engines heated by wood, efficiency should not be quoted as a percentage of the Carnot efficiency, but against a figure 48% lower than Carnot. The effect is not seen with electrically heated rigs, solar or nuclear fission heated engines.