As an indispensable part of identity authentication,offline writer identification plays a notable role in biology,forensics,and historical document analysis.However,identifying handwriting efficiently,stably,and quick...As an indispensable part of identity authentication,offline writer identification plays a notable role in biology,forensics,and historical document analysis.However,identifying handwriting efficiently,stably,and quickly is still challenging due to the method of extracting and processing handwriting features.In this paper,we propose an efficient system to identify writers through handwritten images,which integrates local and global features from similar handwritten images.The local features are modeled by effective aggregate processing,and global features are extracted through transfer learning.Specifically,the proposed system employs a pre-trained Residual Network to mine the relationship between large image sets and specific handwritten images,while the vector of locally aggregated descriptors with double power normalization is employed in aggregating local and global features.Moreover,handwritten image segmentation,preprocessing,enhancement,optimization of neural network architecture,and normalization for local and global features are exploited,significantly improving system performance.The proposed system is evaluated on Computer Vision Lab(CVL)datasets and the International Conference on Document Analysis and Recognition(ICDAR)2013 datasets.The results show that it represents good generalizability and achieves state-of-the-art performance.Furthermore,the system performs better when training complete handwriting patches with the normalization method.The experimental result indicates that it’s significant to segment handwriting reasonably while dealing with handwriting overlap,which reduces visual burstiness.展开更多
The writer identification system identifies individuals based on their handwriting is a frequent topic in biometric authentication and verification systems.Due to its importance,numerous studies have been conducted in...The writer identification system identifies individuals based on their handwriting is a frequent topic in biometric authentication and verification systems.Due to its importance,numerous studies have been conducted in various languages.Researchers have established several learning methods for writer identification including supervised and unsupervised learning.However,supervised methods require a large amount of annotation data,which is impossible in most scenarios.On the other hand,unsupervised writer identification methods may be limited and dependent on feature extraction that cannot provide the proper objectives to the architecture and be misinterpreted.This paper introduces an unsupervised writer identification system that analyzes the data and recognizes the writer based on the inter-feature relations of the data to resolve the uncertainty of the features.A pairwise architecturebased Autoembedder was applied to generate clusterable embeddings for handwritten text images.Furthermore,the trained baseline architecture generates the embedding of the data image,and the K-means algorithm is used to distinguish the embedding of individual writers.The proposed model utilized the IAM dataset for the experiment as it is inconsistent with contributions from the authors but is easily accessible for writer identification tasks.In addition,traditional evaluation metrics are used in the proposed model.Finally,the proposed model is compared with a few unsupervised models,and it outperformed the state-of-the-art deep convolutional architectures in recognizing writers based on unlabeled data.展开更多
基金supported in part by the Postgraduate Research&Practice Innovation Program of Jiangsu Province under Grant KYCX 20_0758in part by the Science and Technology Research Project of Jiangsu Public Security Department under Grant 2020KX005+1 种基金in part by the General Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province under Grant 2022SJYB0473in part by“Cyberspace Security”Construction Project of Jiangsu Provincial Key Discipline during the“14th Five Year Plan”.
文摘As an indispensable part of identity authentication,offline writer identification plays a notable role in biology,forensics,and historical document analysis.However,identifying handwriting efficiently,stably,and quickly is still challenging due to the method of extracting and processing handwriting features.In this paper,we propose an efficient system to identify writers through handwritten images,which integrates local and global features from similar handwritten images.The local features are modeled by effective aggregate processing,and global features are extracted through transfer learning.Specifically,the proposed system employs a pre-trained Residual Network to mine the relationship between large image sets and specific handwritten images,while the vector of locally aggregated descriptors with double power normalization is employed in aggregating local and global features.Moreover,handwritten image segmentation,preprocessing,enhancement,optimization of neural network architecture,and normalization for local and global features are exploited,significantly improving system performance.The proposed system is evaluated on Computer Vision Lab(CVL)datasets and the International Conference on Document Analysis and Recognition(ICDAR)2013 datasets.The results show that it represents good generalizability and achieves state-of-the-art performance.Furthermore,the system performs better when training complete handwriting patches with the normalization method.The experimental result indicates that it’s significant to segment handwriting reasonably while dealing with handwriting overlap,which reduces visual burstiness.
文摘The writer identification system identifies individuals based on their handwriting is a frequent topic in biometric authentication and verification systems.Due to its importance,numerous studies have been conducted in various languages.Researchers have established several learning methods for writer identification including supervised and unsupervised learning.However,supervised methods require a large amount of annotation data,which is impossible in most scenarios.On the other hand,unsupervised writer identification methods may be limited and dependent on feature extraction that cannot provide the proper objectives to the architecture and be misinterpreted.This paper introduces an unsupervised writer identification system that analyzes the data and recognizes the writer based on the inter-feature relations of the data to resolve the uncertainty of the features.A pairwise architecturebased Autoembedder was applied to generate clusterable embeddings for handwritten text images.Furthermore,the trained baseline architecture generates the embedding of the data image,and the K-means algorithm is used to distinguish the embedding of individual writers.The proposed model utilized the IAM dataset for the experiment as it is inconsistent with contributions from the authors but is easily accessible for writer identification tasks.In addition,traditional evaluation metrics are used in the proposed model.Finally,the proposed model is compared with a few unsupervised models,and it outperformed the state-of-the-art deep convolutional architectures in recognizing writers based on unlabeled data.