Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t...Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.展开更多
In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr...In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment.展开更多
Exploiting high-performance yet low-cost hard carbon anodes is crucial to advancing the state-of-the-art sodium-ion batteries.However,the achievement of superior initial Coulombic efficiency(ICE)and high Na-storage ca...Exploiting high-performance yet low-cost hard carbon anodes is crucial to advancing the state-of-the-art sodium-ion batteries.However,the achievement of superior initial Coulombic efficiency(ICE)and high Na-storage capacity via low-temperature carbonization remains challenging due to the presence of tremendous defects with few closed pores.Here,a facile hybrid carbon framework design is proposed from the polystyrene precursor bearing distinct molecular bridges at a low pyrolysis temperature of 800℃ via in situ fusion and embedding strategy.This is realized by integrating triazine-and carbonylcrosslinked polystyrene nanospheres during carbonization.The triazine crosslinking allows in situ fusion of spheres into layered carbon with low defects and abundant closed pores,which serves as a matrix for embedding the well-retained carbon spheres with nanopores/defects derived from carbonyl crosslinking.Therefore,the hybrid hard carbon with intimate interface showcases synergistic Na ions storage behavior,showing an ICE of 70.2%,a high capacity of 279.3 mAh g^(-1),and long-term 500 cycles,superior to carbons from the respective precursor and other reported carbons fabricated under the low carbonization temperature.The present protocol opens new avenues toward low-cost hard carbon anode materials for high-performance sodiumion batteries.展开更多
The catalytic conversion of polystyrene (PS) was studied in the presence of the materials type HZSM-5, CeO<sub>2</sub>, 10% CeO<sub>2</sub>/HZSM-5 and 20% CeO<sub>2</sub>/HZSM-5, wh...The catalytic conversion of polystyrene (PS) was studied in the presence of the materials type HZSM-5, CeO<sub>2</sub>, 10% CeO<sub>2</sub>/HZSM-5 and 20% CeO<sub>2</sub>/HZSM-5, which were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen adsorption at 77K. The catalytic tests were performed via thermogravimetric analysis (TG) at heating rates of 5, 10 and 20˚C min<sup>−1</sup> in a temperature range from 30˚C to 900˚C. For the tests, a ratio of 30% by mass of each catalytic material mixed with PS was used and the activation energy of the degradation process was determined by the Vyazovkin method. The obtained results showed that the addition of the catalyst to the PS in general reduced its degradation temperature. The 10% CeO<sub>2</sub>/HZSM-5 catalyst showed greater efficiency, as it resulted in lower activation energy for PS degradation. Thus, the combination of CeO<sub>2</sub> with HZSM-5 resulted in materials with potential for application in the catalytic degradation of polystyrene and the results indicate that the production of a composite material can be a good strategy to generate an increase in catalytic activity and a decrease in energy process activation.展开更多
Managing agricultural waste and expanded polystyrene (EPS) poses significant environmental and economic challenges. This study aims to create composites from millet husks, rice husks, and recycled EPS, using a manufac...Managing agricultural waste and expanded polystyrene (EPS) poses significant environmental and economic challenges. This study aims to create composites from millet husks, rice husks, and recycled EPS, using a manufacturing method that involves dissolving the polystyrene in a solvent followed by cold pressing. Various particle sizes and two binder dosages were investigated to assess their influence on the physico-mechanical properties of the composites. The mechanical properties obtained range from 2.54 to 4.47 MPa for the Modulus of Rupture (MOR) and from 686 to 1400 MPa for the Modulus of Elasticity in Bending (MOE). The results indicate that these composites have potential for applications in the construction sector, particularly for wood structures and interior decoration. Moreover, surface treatments could enhance their durability and mechanical properties. This research contributes to the valorization of agricultural and plastic waste as eco-friendly and economical construction materials.展开更多
In the current context of environmental challenges, this study focuses on developing innovative and eco-friendly composites using rice husk and recycled expanded polystyrene. This dual-responsibility approach valorize...In the current context of environmental challenges, this study focuses on developing innovative and eco-friendly composites using rice husk and recycled expanded polystyrene. This dual-responsibility approach valorizes a by-product like rice husk, often considered waste, and reuses polystyrene, a plastic waste, thereby contributing to CO2 emission reduction and effective waste management. The manufacturing process involves dissolving recycled polystyrene into a solvent to create a binder, which is then mixed with rice husk and cold-compacted into composite materials. The study examines the impact of two particle sizes (fine and coarse) and different proportions of recycled polystyrene binder. The results show significant variations in the mechanical characteristics of the composites, with Modulus of Rupture (MOR) values varying from 2.41 to 3.47 MPa, Modulus of Elasticity (MOE) ranging from 223.41 to 1497.2 MPa, and Stiffness Coefficient (K) from 5.04 to 33.96 N/mm. These characteristics demonstrate that these composites are appropriate for various construction applications, including interior decoration, panel claddings, and potentially for furniture and door manufacturing when combined with appropriate coatings. This study not only highlights the recycling of agricultural and plastic waste but also provides a localized approach to addressing global climate change challenges through the adoption of sustainable building materials.展开更多
Chloromethylation of polystyrene (PS) with two different chloromethylating systems methylal/thionyl chloride and paraformaldehyde/trimethylchlorosilane was studied. Soluble chloromethylated polystyrene with a degree...Chloromethylation of polystyrene (PS) with two different chloromethylating systems methylal/thionyl chloride and paraformaldehyde/trimethylchlorosilane was studied. Soluble chloromethylated polystyrene with a degree of substitution of 89% was obtained. The Conant-Finkelstein reaction on the chloromethylated PS afforded soluble iodomethylated polystyrene with a degree of substitution as high as 96%. The reaction conditions of Minisci were employed to radically pyridinate PS via its iodomethylated derivative. Polyelectrolytes were formed which could be converted to normal polymers by treatment with a 20% aqueous solution of NaOH.展开更多
Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,...Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,polystyrene granule mortar and polyurethane foam in order to study the weatherablility of external thermal insulation system(ETIS).The change rules of adhesive strength were hereby studied at different time period of atmospheric exposure tests.The experimental results show that the adhesive strength of three kinds of ETIS changes a little during high temperature-spraying water cycle,but the adhesive strength of ETIS with EPS board decreases significantly after heating-refrigeration cycle.The lowering rate of adhesive strength with painting finishes is obviously faster than that of tile finishes for ETIS of EPS board during heating-refrigeration cycle.The weatherability of ETIS with EPS board is worse than the other two,and ETIS of polystyrene granule mortar and polyurethane foam are more suitable than ETIS of EPS board in cold area.展开更多
Fluorescent polystyrene(PS)/porphyrin(TPPA) composite nanospheres were successfully fabricated by electrospinning. The SEM images clearly show that owing to adding TPPA in PS, the averaged diameter of the composit...Fluorescent polystyrene(PS)/porphyrin(TPPA) composite nanospheres were successfully fabricated by electrospinning. The SEM images clearly show that owing to adding TPPA in PS, the averaged diameter of the composite nanospheres became smaller, from 1500 to 580 nm. Fourier-transform infrared(FTIR) spectra determined the chemical composition of the resulting PS/TPPA composite nanospheres. The photoluminescent(PL) spectral analysis indicates that the peak position of the composite nanospheres in either solid state or water is identical to that of pure TPPA, at about 652 nm, and is still unchangeable when they are left for at least 20 d, indicating the stable photoluminescent property of the fluorescent composite nanospheres.展开更多
In this paper, magnetic nanospheres coated with polystyrene (Fe3O4@PS) were prepared for the removal of organochlorine pesticides from aqueous solutions. The obtained Fe3O4@PS was round shape with diameter of 55...In this paper, magnetic nanospheres coated with polystyrene (Fe3O4@PS) were prepared for the removal of organochlorine pesticides from aqueous solutions. The obtained Fe3O4@PS was round shape with diameter of 55±11 nm. The VSM results illustrated that its higher saturated magnetization was 36.76 emu g^-1 and it could be easily separated from aqueous solutions with a permanent magnet. The adsorption results showed that pesticides could be effectively adsorbed and the adsorption equilibrium time was less than 20 mins. The pseudo-second-order model was suitable to describe the adsorption kinetics. Compared with the Freundlich adsorption model, the adsorption data fitted well with Langmuir model. The effect of salinity and humic acid was also studied and the results illustrated that they could be neglected under optimized conditions. The asobtained sorbent showed a good performance with more than 93.3% pesticides removal in treating actual water samples.展开更多
An experimental system for measuring the VLE of polymer solutions based on the staticvapor-pressure method has been established,VLE data for mixtures of toluene and polystyrene withdifferent molecular weight covering ...An experimental system for measuring the VLE of polymer solutions based on the staticvapor-pressure method has been established,VLE data for mixtures of toluene and polystyrene withdifferent molecular weight covering a wide range from 2.98×10~3 to 3.84×10~6 were obtained at 35℃.The reduced pressure p/p°versus weight fraction W plot is found to be independent on the molecularweight of the polymer within the experimental error.Calculated activity coefficients are also independenton the molecular weight.However,for the Flory-Huggins interaction parameter x,not only a strongconcentration dependence is observed,but also the molecular weight of the polymer exerts definiteinfluence.Generally,the parameter x slightly increases as the molecular weight of the polymer decreasesespecially when the molecular weight is low.The dependence of the parameter x on the molecularweight can be neglected when the molecular weight of polymer is greater than 1.00×10~4.展开更多
The highly ordered silver-coated colloidal crystals arrays and macroporous silver films were derived through an electrostatics-induced adsorption effect using polystyrene(PS) as templates. Carboxyl-modified PS microsp...The highly ordered silver-coated colloidal crystals arrays and macroporous silver films were derived through an electrostatics-induced adsorption effect using polystyrene(PS) as templates. Carboxyl-modified PS microspheres were prepared by emulsifier-free emulsion polymerization using methacrylic acid(MAA) as the functional monomer. PS microspheres were self-assembled into close packing colloidal crystals of facecentered cubic arrays to the substrate with vertical deposition method. These colloidal crystals were modified using dopamine(DA) to form poly-dopamine(PDA) during its oxidative polymerization. Through electrostatic interaction, the silver nanoparticles were deposited and adsorbed onto the surfaces of colloidal crystals templates by exposing [Ag(NH_3)_2]^+solution to infrared irradiation. Removal of the polymeric template by etching with methylbenzene solvent resulted in 3D ordered macroporous silver films. The structural and properties of the ordered silver-coated arrays and macroporous silver films were characterized by field emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD), UV-vis spectroscopy and surface-enhanced Raman spectroscopy(SERS). The results indicate that the prepared silver-coated arrays and macroporous silver films possess the features of ordered multilayer arrangement, uniformity and repeatability as well as an ideal SERS effect.展开更多
A facile and novel method for the production of a large area of well-ordered polystyrene (PS) colloidal crystal monolayer was established using the surfactant-free Langmuir-Blodgett (LB) technique. The hydrophobic...A facile and novel method for the production of a large area of well-ordered polystyrene (PS) colloidal crystal monolayer was established using the surfactant-free Langmuir-Blodgett (LB) technique. The hydrophobic property (film-forming ability) of PS spheres was improved by a thermo-rheology treatment before LB assembly, and a large film was obtained. In contrast to the traditional LB technique, no surfactant was needed in this method, which could eliminate the additional contamination of surfactants in the preparation process and provided the products with versa- tile applications in nanosphere lithography (NSL) for biosensor, surface plasmon resonance, and surface enhanced Raman spectroscopy .展开更多
In the present work,a study is made to investigate the effects of process parameters,namely,laser power,scanning speed,hatch spacing, layer thickness and powder temperature, on the tensile strength for selective laser...In the present work,a study is made to investigate the effects of process parameters,namely,laser power,scanning speed,hatch spacing, layer thickness and powder temperature, on the tensile strength for selective laser sintering( SLS) of polystyrene( PS). Artificial neural network( ANN) methodology is employed to develop mathematical relationships between the process parameters and the output variable of the sintering strength. Experimental data are used to train and test the network. The present neural network model is applied to predicting the experimental outcome as a function of input parameters within a specified range. Predicted sintering strength using the trained back propagation( BP) network model showed quite a good agreement with measured ones. The results showed that the networks had high processing speed,the abilities of error-correcting and self-organizing. ANN models had favorable performance and proved to be an applicable tool for predicting sintering strength SLS of PS.展开更多
A variety of barium sulfate(BaSO4) carriers with or without mesopore structure were synthesized via precipitation reaction in aqueous solution of barium hydroxide and sulfuric acid with ethylene glycol as a modifying ...A variety of barium sulfate(BaSO4) carriers with or without mesopore structure were synthesized via precipitation reaction in aqueous solution of barium hydroxide and sulfuric acid with ethylene glycol as a modifying agent, and then calcined at various temperatures. The obtained BaSO4 was used as catalyst carriers for polystyrene(PS) hydrogenation, and BaSO4 supported palladium(Pd) catalysts with Pd content of 5wt% were prepared by using impregnation method. N2 physisorption, transmission electron microscopy, X-ray diffraction and kinetics studies were used to investigate the effect of carrier structure on the dispersion and geometric location of active metal and their catalytic activities in PS hydrogenation. It was found that the pore structure of carrier played an important role in the dispersion and location of Pd grains. The activation energy values for all the Pd/BaSO4 catalysts were around 49.1kJ/mol, while the pre-exponential factor for Pd/BSC-6H was much higher than others. The Pd/BSC-6H without mesopores had Pd grains deposited on the external surface of the carrier, and exhibited better activity than the mesoporous catalysts. It is indicated that the utilization of Pd/BSC-6H can reduce the pore diffusion of PS coils and enabled more active sites to participate in the PS hydrogenation.展开更多
Molybdenum (VI) complex, namely molybdenum dioxobis(2,4-pentanedione) [MoO2(acac)2] used as epoxidation catalyst species, was synthesized and characterized by elemental analysis and infrared spectrum. Polystyrene-supp...Molybdenum (VI) complex, namely molybdenum dioxobis(2,4-pentanedione) [MoO2(acac)2] used as epoxidation catalyst species, was synthesized and characterized by elemental analysis and infrared spectrum. Polystyrene-supported molybdenum dioxobis(2,4-pentanedione) [MoO2(acac)2] for synthesis of epoxycyclohexane was prepared by phase transfer catalysis method. Effects of various factors in synthesis of epoxycyclohexane by reaction of cyclohexene and t-BuOOH in the atmosphere of nitrogen catalyzed by polystyrene-supported MoO2(acac)2 were also investigated. Under the following conditions, n(cyclohexene):n(t-BuOOH)=3.5:l (based on 0.1 mol of t-BuOOH), volume of solvent -10ml, reaction temperature -80℃, reaction time -60min, and mass of molybdenum in the catalyst -2.30×0^(-3)g, the yield of epoxycyclohexane on the basis of t-BuOOH is over 99.5%, and the purity of epoxycyclohexane is about 99.9% by gas chromatogram(GC) analysis.展开更多
Broadband Mie scattering is used to determine the parameters of polystyrene aerosol beads in air,such as size and wavelength dependence of refractive index.This method consists in the selection of such parameters of t...Broadband Mie scattering is used to determine the parameters of polystyrene aerosol beads in air,such as size and wavelength dependence of refractive index.This method consists in the selection of such parameters of the scattering object,which reproduce observed spectrum properties.That is why it is very sensitive and hence very precise.We found that there is an ambiguity of polystyrene aerosol beads properties,determined with this method.Different combinations of polystyrene particle size and its refractive index can give the same position of Mie resonances.This ambiguity leads to an increase in the error in determining the size and refractive index of the particle.The refined errors are calculated and the way of their reduction is indicated.展开更多
Amorphous 2,4,6-trissubstituted pyridines containing three peripheral carbazole or two triphenylamine and one carbazole moieties, respectively, have been synthesized and characterized. The properties of the compounds ...Amorphous 2,4,6-trissubstituted pyridines containing three peripheral carbazole or two triphenylamine and one carbazole moieties, respectively, have been synthesized and characterized. The properties of the compounds are investigated by UV-vis absorption, photoluminescence spectroscopy, thermal analysis as well as cyclic voltammetry. The results show that the compounds have high thermal stability, emit blue light. Also, the compounds possess the HOMO and LUMO energy levels comparable to those of NPB. The effects of different substituents on the electronic properties of the materials have been discussed.展开更多
Through direct shear and triaxial compression tests, effects of expanded polystyrene (EPS) mass ratios in sand-EPS mixtures and stress status on materials' shear behavior were investigated. Hyperbolic curves were ...Through direct shear and triaxial compression tests, effects of expanded polystyrene (EPS) mass ratios in sand-EPS mixtures and stress status on materials' shear behavior were investigated. Hyperbolic curves were used to fit relationship between shear stress and shear displacement. The shear behavior is marginally associated with the EPS ratios and normal/confining stresses. Increases of EPS ratios and decreases of normal/confining stresses result in shear strength decreases. The shapes of Mohr-Coulomb's envelope include linear and piecewise linear types, which are basically determined by the EPS ratio. Such difference is thought related to the embedding or apparent cohesion effect under relatively high EPS ratio conditions. Shear strength parameters can be used for further modeling and design purposes.展开更多
基金funding support from National Natural Science Foundation of China(Grant No.52179109)Jiangsu Provincial Natural Science Foundation(Grant No.BK20230967)Open Research Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University(Grant No.KF2022-02).
文摘Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.
基金National Natural Science Foundation of China(Grant Nos.51821003,52175524,61704158)the Natural Science Foundation of Shanxi Province(Grant No.202103021224206)Shanxi"1331 Project"Key Subjects Construction to provide fund for conducting experiments。
文摘In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment.
基金financially supported by the project of the National Natural Science Foundation of China (Grant Nos.51972270,52322203)the Key Research and Development Program of Shaanxi Province (Grant NO.2024GH-ZDXM-21)the Fundamental Research Funds for the Central Universities (Grant Nos.G2022KY0607,23GH0202277).
文摘Exploiting high-performance yet low-cost hard carbon anodes is crucial to advancing the state-of-the-art sodium-ion batteries.However,the achievement of superior initial Coulombic efficiency(ICE)and high Na-storage capacity via low-temperature carbonization remains challenging due to the presence of tremendous defects with few closed pores.Here,a facile hybrid carbon framework design is proposed from the polystyrene precursor bearing distinct molecular bridges at a low pyrolysis temperature of 800℃ via in situ fusion and embedding strategy.This is realized by integrating triazine-and carbonylcrosslinked polystyrene nanospheres during carbonization.The triazine crosslinking allows in situ fusion of spheres into layered carbon with low defects and abundant closed pores,which serves as a matrix for embedding the well-retained carbon spheres with nanopores/defects derived from carbonyl crosslinking.Therefore,the hybrid hard carbon with intimate interface showcases synergistic Na ions storage behavior,showing an ICE of 70.2%,a high capacity of 279.3 mAh g^(-1),and long-term 500 cycles,superior to carbons from the respective precursor and other reported carbons fabricated under the low carbonization temperature.The present protocol opens new avenues toward low-cost hard carbon anode materials for high-performance sodiumion batteries.
文摘The catalytic conversion of polystyrene (PS) was studied in the presence of the materials type HZSM-5, CeO<sub>2</sub>, 10% CeO<sub>2</sub>/HZSM-5 and 20% CeO<sub>2</sub>/HZSM-5, which were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen adsorption at 77K. The catalytic tests were performed via thermogravimetric analysis (TG) at heating rates of 5, 10 and 20˚C min<sup>−1</sup> in a temperature range from 30˚C to 900˚C. For the tests, a ratio of 30% by mass of each catalytic material mixed with PS was used and the activation energy of the degradation process was determined by the Vyazovkin method. The obtained results showed that the addition of the catalyst to the PS in general reduced its degradation temperature. The 10% CeO<sub>2</sub>/HZSM-5 catalyst showed greater efficiency, as it resulted in lower activation energy for PS degradation. Thus, the combination of CeO<sub>2</sub> with HZSM-5 resulted in materials with potential for application in the catalytic degradation of polystyrene and the results indicate that the production of a composite material can be a good strategy to generate an increase in catalytic activity and a decrease in energy process activation.
文摘Managing agricultural waste and expanded polystyrene (EPS) poses significant environmental and economic challenges. This study aims to create composites from millet husks, rice husks, and recycled EPS, using a manufacturing method that involves dissolving the polystyrene in a solvent followed by cold pressing. Various particle sizes and two binder dosages were investigated to assess their influence on the physico-mechanical properties of the composites. The mechanical properties obtained range from 2.54 to 4.47 MPa for the Modulus of Rupture (MOR) and from 686 to 1400 MPa for the Modulus of Elasticity in Bending (MOE). The results indicate that these composites have potential for applications in the construction sector, particularly for wood structures and interior decoration. Moreover, surface treatments could enhance their durability and mechanical properties. This research contributes to the valorization of agricultural and plastic waste as eco-friendly and economical construction materials.
文摘In the current context of environmental challenges, this study focuses on developing innovative and eco-friendly composites using rice husk and recycled expanded polystyrene. This dual-responsibility approach valorizes a by-product like rice husk, often considered waste, and reuses polystyrene, a plastic waste, thereby contributing to CO2 emission reduction and effective waste management. The manufacturing process involves dissolving recycled polystyrene into a solvent to create a binder, which is then mixed with rice husk and cold-compacted into composite materials. The study examines the impact of two particle sizes (fine and coarse) and different proportions of recycled polystyrene binder. The results show significant variations in the mechanical characteristics of the composites, with Modulus of Rupture (MOR) values varying from 2.41 to 3.47 MPa, Modulus of Elasticity (MOE) ranging from 223.41 to 1497.2 MPa, and Stiffness Coefficient (K) from 5.04 to 33.96 N/mm. These characteristics demonstrate that these composites are appropriate for various construction applications, including interior decoration, panel claddings, and potentially for furniture and door manufacturing when combined with appropriate coatings. This study not only highlights the recycling of agricultural and plastic waste but also provides a localized approach to addressing global climate change challenges through the adoption of sustainable building materials.
文摘Chloromethylation of polystyrene (PS) with two different chloromethylating systems methylal/thionyl chloride and paraformaldehyde/trimethylchlorosilane was studied. Soluble chloromethylated polystyrene with a degree of substitution of 89% was obtained. The Conant-Finkelstein reaction on the chloromethylated PS afforded soluble iodomethylated polystyrene with a degree of substitution as high as 96%. The reaction conditions of Minisci were employed to radically pyridinate PS via its iodomethylated derivative. Polyelectrolytes were formed which could be converted to normal polymers by treatment with a 20% aqueous solution of NaOH.
基金Funded by the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20050487017)
文摘Atmospheric exposure tests including two experimental stages of high temperature-spraying water cycle and heating-refrigeration cycle were carried out on three currently used ETIS of expanded polystyrene(EPS) board,polystyrene granule mortar and polyurethane foam in order to study the weatherablility of external thermal insulation system(ETIS).The change rules of adhesive strength were hereby studied at different time period of atmospheric exposure tests.The experimental results show that the adhesive strength of three kinds of ETIS changes a little during high temperature-spraying water cycle,but the adhesive strength of ETIS with EPS board decreases significantly after heating-refrigeration cycle.The lowering rate of adhesive strength with painting finishes is obviously faster than that of tile finishes for ETIS of EPS board during heating-refrigeration cycle.The weatherability of ETIS with EPS board is worse than the other two,and ETIS of polystyrene granule mortar and polyurethane foam are more suitable than ETIS of EPS board in cold area.
基金Supported by National Natural Science Foundation of China(Nos.20674023 and 20801022)
文摘Fluorescent polystyrene(PS)/porphyrin(TPPA) composite nanospheres were successfully fabricated by electrospinning. The SEM images clearly show that owing to adding TPPA in PS, the averaged diameter of the composite nanospheres became smaller, from 1500 to 580 nm. Fourier-transform infrared(FTIR) spectra determined the chemical composition of the resulting PS/TPPA composite nanospheres. The photoluminescent(PL) spectral analysis indicates that the peak position of the composite nanospheres in either solid state or water is identical to that of pure TPPA, at about 652 nm, and is still unchangeable when they are left for at least 20 d, indicating the stable photoluminescent property of the fluorescent composite nanospheres.
基金Funded by the National Natural Science Foundation of China(No.21007062)SKLECE Open Fund(No.KF2009-21)
文摘In this paper, magnetic nanospheres coated with polystyrene (Fe3O4@PS) were prepared for the removal of organochlorine pesticides from aqueous solutions. The obtained Fe3O4@PS was round shape with diameter of 55±11 nm. The VSM results illustrated that its higher saturated magnetization was 36.76 emu g^-1 and it could be easily separated from aqueous solutions with a permanent magnet. The adsorption results showed that pesticides could be effectively adsorbed and the adsorption equilibrium time was less than 20 mins. The pseudo-second-order model was suitable to describe the adsorption kinetics. Compared with the Freundlich adsorption model, the adsorption data fitted well with Langmuir model. The effect of salinity and humic acid was also studied and the results illustrated that they could be neglected under optimized conditions. The asobtained sorbent showed a good performance with more than 93.3% pesticides removal in treating actual water samples.
文摘An experimental system for measuring the VLE of polymer solutions based on the staticvapor-pressure method has been established,VLE data for mixtures of toluene and polystyrene withdifferent molecular weight covering a wide range from 2.98×10~3 to 3.84×10~6 were obtained at 35℃.The reduced pressure p/p°versus weight fraction W plot is found to be independent on the molecularweight of the polymer within the experimental error.Calculated activity coefficients are also independenton the molecular weight.However,for the Flory-Huggins interaction parameter x,not only a strongconcentration dependence is observed,but also the molecular weight of the polymer exerts definiteinfluence.Generally,the parameter x slightly increases as the molecular weight of the polymer decreasesespecially when the molecular weight is low.The dependence of the parameter x on the molecularweight can be neglected when the molecular weight of polymer is greater than 1.00×10~4.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50873085 and 21375116)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘The highly ordered silver-coated colloidal crystals arrays and macroporous silver films were derived through an electrostatics-induced adsorption effect using polystyrene(PS) as templates. Carboxyl-modified PS microspheres were prepared by emulsifier-free emulsion polymerization using methacrylic acid(MAA) as the functional monomer. PS microspheres were self-assembled into close packing colloidal crystals of facecentered cubic arrays to the substrate with vertical deposition method. These colloidal crystals were modified using dopamine(DA) to form poly-dopamine(PDA) during its oxidative polymerization. Through electrostatic interaction, the silver nanoparticles were deposited and adsorbed onto the surfaces of colloidal crystals templates by exposing [Ag(NH_3)_2]^+solution to infrared irradiation. Removal of the polymeric template by etching with methylbenzene solvent resulted in 3D ordered macroporous silver films. The structural and properties of the ordered silver-coated arrays and macroporous silver films were characterized by field emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD), UV-vis spectroscopy and surface-enhanced Raman spectroscopy(SERS). The results indicate that the prepared silver-coated arrays and macroporous silver films possess the features of ordered multilayer arrangement, uniformity and repeatability as well as an ideal SERS effect.
基金Supported by the National Natural Science Foundation of China(Nos.20473029and20573041)Program for Changjiang Scholars and Innovative Research Team in the University of China(No.IRT0422)+3 种基金Program for New Century Excellent Talents in theUniversity of ChinaScientific Research Foundation for the Returned Overseas Chinese Scholars Initiated State Education Ministry of Chinathe 111 Project of China(No.B06009).
文摘A facile and novel method for the production of a large area of well-ordered polystyrene (PS) colloidal crystal monolayer was established using the surfactant-free Langmuir-Blodgett (LB) technique. The hydrophobic property (film-forming ability) of PS spheres was improved by a thermo-rheology treatment before LB assembly, and a large film was obtained. In contrast to the traditional LB technique, no surfactant was needed in this method, which could eliminate the additional contamination of surfactants in the preparation process and provided the products with versa- tile applications in nanosphere lithography (NSL) for biosensor, surface plasmon resonance, and surface enhanced Raman spectroscopy .
基金National Natural Science Foundation of China(No.51475315)Innovative Project on the Integration of Industry,Education and Research of Jiangsu Province,China(No.BY2014059-10)
文摘In the present work,a study is made to investigate the effects of process parameters,namely,laser power,scanning speed,hatch spacing, layer thickness and powder temperature, on the tensile strength for selective laser sintering( SLS) of polystyrene( PS). Artificial neural network( ANN) methodology is employed to develop mathematical relationships between the process parameters and the output variable of the sintering strength. Experimental data are used to train and test the network. The present neural network model is applied to predicting the experimental outcome as a function of input parameters within a specified range. Predicted sintering strength using the trained back propagation( BP) network model showed quite a good agreement with measured ones. The results showed that the networks had high processing speed,the abilities of error-correcting and self-organizing. ANN models had favorable performance and proved to be an applicable tool for predicting sintering strength SLS of PS.
基金Supported by the Non-governmental International Science and Technology Cooperation Program from the Science and Technology Commission of Shanghai Municipality(No.10520706000)Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110074110012)State Key Laboratory of Chemical Engineering Open Fund(No.SKL-ChE09C07)
文摘A variety of barium sulfate(BaSO4) carriers with or without mesopore structure were synthesized via precipitation reaction in aqueous solution of barium hydroxide and sulfuric acid with ethylene glycol as a modifying agent, and then calcined at various temperatures. The obtained BaSO4 was used as catalyst carriers for polystyrene(PS) hydrogenation, and BaSO4 supported palladium(Pd) catalysts with Pd content of 5wt% were prepared by using impregnation method. N2 physisorption, transmission electron microscopy, X-ray diffraction and kinetics studies were used to investigate the effect of carrier structure on the dispersion and geometric location of active metal and their catalytic activities in PS hydrogenation. It was found that the pore structure of carrier played an important role in the dispersion and location of Pd grains. The activation energy values for all the Pd/BaSO4 catalysts were around 49.1kJ/mol, while the pre-exponential factor for Pd/BSC-6H was much higher than others. The Pd/BSC-6H without mesopores had Pd grains deposited on the external surface of the carrier, and exhibited better activity than the mesoporous catalysts. It is indicated that the utilization of Pd/BSC-6H can reduce the pore diffusion of PS coils and enabled more active sites to participate in the PS hydrogenation.
基金Supported by the Outstanding Personality Innovation Funds of Henan Province(No.0121001900).
文摘Molybdenum (VI) complex, namely molybdenum dioxobis(2,4-pentanedione) [MoO2(acac)2] used as epoxidation catalyst species, was synthesized and characterized by elemental analysis and infrared spectrum. Polystyrene-supported molybdenum dioxobis(2,4-pentanedione) [MoO2(acac)2] for synthesis of epoxycyclohexane was prepared by phase transfer catalysis method. Effects of various factors in synthesis of epoxycyclohexane by reaction of cyclohexene and t-BuOOH in the atmosphere of nitrogen catalyzed by polystyrene-supported MoO2(acac)2 were also investigated. Under the following conditions, n(cyclohexene):n(t-BuOOH)=3.5:l (based on 0.1 mol of t-BuOOH), volume of solvent -10ml, reaction temperature -80℃, reaction time -60min, and mass of molybdenum in the catalyst -2.30×0^(-3)g, the yield of epoxycyclohexane on the basis of t-BuOOH is over 99.5%, and the purity of epoxycyclohexane is about 99.9% by gas chromatogram(GC) analysis.
文摘Broadband Mie scattering is used to determine the parameters of polystyrene aerosol beads in air,such as size and wavelength dependence of refractive index.This method consists in the selection of such parameters of the scattering object,which reproduce observed spectrum properties.That is why it is very sensitive and hence very precise.We found that there is an ambiguity of polystyrene aerosol beads properties,determined with this method.Different combinations of polystyrene particle size and its refractive index can give the same position of Mie resonances.This ambiguity leads to an increase in the error in determining the size and refractive index of the particle.The refined errors are calculated and the way of their reduction is indicated.
文摘Amorphous 2,4,6-trissubstituted pyridines containing three peripheral carbazole or two triphenylamine and one carbazole moieties, respectively, have been synthesized and characterized. The properties of the compounds are investigated by UV-vis absorption, photoluminescence spectroscopy, thermal analysis as well as cyclic voltammetry. The results show that the compounds have high thermal stability, emit blue light. Also, the compounds possess the HOMO and LUMO energy levels comparable to those of NPB. The effects of different substituents on the electronic properties of the materials have been discussed.
基金Project(50708031) supported by the National Natural Science Foundation of ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, SEM
文摘Through direct shear and triaxial compression tests, effects of expanded polystyrene (EPS) mass ratios in sand-EPS mixtures and stress status on materials' shear behavior were investigated. Hyperbolic curves were used to fit relationship between shear stress and shear displacement. The shear behavior is marginally associated with the EPS ratios and normal/confining stresses. Increases of EPS ratios and decreases of normal/confining stresses result in shear strength decreases. The shapes of Mohr-Coulomb's envelope include linear and piecewise linear types, which are basically determined by the EPS ratio. Such difference is thought related to the embedding or apparent cohesion effect under relatively high EPS ratio conditions. Shear strength parameters can be used for further modeling and design purposes.