Purpose: The present research was performed to evaluate the effect of food thickeners on the bitterness and dissolution of bitter drugs when co-administered to patients with dysphagia. Methods: Amlodipine besilate (AM...Purpose: The present research was performed to evaluate the effect of food thickeners on the bitterness and dissolution of bitter drugs when co-administered to patients with dysphagia. Methods: Amlodipine besilate (AMPB) powder was used as a model drug. Starch- and xanthan gum-based food thickeners were examined, with swallowing-aid jelly as a reference. The line-spread test (LST), texture prolife analysis (TPA) were done firstly. In related to AMPB powder mixed with food thickeners solution, a conventional dissolution test simulating the oral cavity was performed, the amlodipine (AMP) concentration and taste sensor output for dissolved medium versus time profiles were developed. The dissolution test at pH 1.2 and 4.5, representing typical gastric conditions for younger or elderly people, was performed in two kinds of thickener solution and swallowing-aid jelly those were mixed with AMPB powder. Results: LST demonstrated that xanthan gum-based food thickeners fulfilled the requirements for patients with dysphagia but that starch-based food thickeners did not. In TPA, hardness and adhesiveness decreased proportionally as the concentration increased for both kinds of food thickener. Conventional dissolution test simulating oral cavity demonstrated the following bitterness ranking: xanthan gum-based food thickener Conclusion: Although xanthan gum-based food thickeners were successful in masking the bitterness of AMP, they may reduce its bioavailability in humans. The 7.1 and 4.7 (w/v) % starch-based thickener show bitterness inhibition under simulated oral cavity conditions and complete dissolution of AMP under simulated gastric conditions.展开更多
In this paper, the time dependent effects of various pressure treatments on the characteristics of lotus-seed starch which was modified by ultra-high pressure (UHP) were investigated. The results showed that the pol...In this paper, the time dependent effects of various pressure treatments on the characteristics of lotus-seed starch which was modified by ultra-high pressure (UHP) were investigated. The results showed that the polarization cross of lotus-seed starch granules was weakening gradually with increasing the treatment time, which indicated the termination of their ordered crystallite structures. The morphologies of granules were collapsed once the UHP was kept at 500 MPa for 60 minutes. The particle size analysis demonstrated that the granule size and distribution of lotus-seed starches increased as the treatment time was prolonged. X-ray diffraction studies showed that the intensity of the feature diffraction peaks of starch decreased and eventually disappeared with increasing the treatment time, and B-type transformation pattern was observed. The Fourier transform infrared spectra (FTIR) analysis of starch showed that the UHP is a physical modification processing because no new groups formed. The research showed that UHP processing at certain degree is capable to achieve the modification of lotus-seed starch. It is of significance for the deep processing of lotus-seed products.展开更多
The purpose of this research was to evaluate the effect of starch- and xanthan gum-based food thickeners on the bitterness and dissolution of amlodipine besilate (AMPB) loaded orally disintegrating tablets (ODT) for p...The purpose of this research was to evaluate the effect of starch- and xanthan gum-based food thickeners on the bitterness and dissolution of amlodipine besilate (AMPB) loaded orally disintegrating tablets (ODT) for potential use with patients with dysphagia. A conventional dissolution test simulating the oral cavity was performed and the taste sensor output of the dissolved sample was evaluated over a 60-seconds period. When four types of AMPB loaded ODTs were tested alone, at 60 seconds, branded product (A) was the least bitter, followed by generic product (B)/generic product (C) which were equal, and finally generic product (D) which was the most bitter. Inhibition of bitterness of AMPB loaded ODTs mixed thickeners, 1.0 (w/v) % xanthan gum-based food thickener solution was significantly strong. The 7.1 (w/v) % and 4.7 (w/v) % starch-based food thickeners solution also effective in bitterness inhibition compared to the 2.4 (w/v) % starch-based food thickener solution. The dissolution test under pH 1.2 in related to 7.1 (w/v) % and 4.7 (w/v) % starch-based thickener contained each of AMPB loaded ODTs were associated with an almost complete amlodipine (AMP) dissolution (almost 90% at 10 minutes), whereas the 1.0, 2.0, 3.0 (w/v) % xanthan gum-based food thickener solution containing AMPB loaded ODTs did not show complete AMP dissolution and there were large variations in the initial dissolution stage. This suggests that a mixture of xanthan gum-based thickener and AMPB loaded ODT poses a risk of reduction of bioavailability. In conclusion, a mixture of 4.7 (w/v) % or 7.1 (w/v) % starch-based thickener with ODTs provides complete release of AMP and superior bitterness inhibition, so is the best choice for administration to patients with dysphagia.展开更多
Despite the efforts to reduce its water consumption,the food industry still requires large amounts of water. Membrane processes have established themselves in the food industry at the beginning of the water loop for p...Despite the efforts to reduce its water consumption,the food industry still requires large amounts of water. Membrane processes have established themselves in the food industry at the beginning of the water loop for preparation of the intake water and at the end water loop for recovery and final treatment of the water. The focus of this paper is on two application studies related to water recovery and water treatment in the food industry. The first study is on water recovery from tank washing water in customized liquid sugar production. During the washing of the tanks,sweet water with 1°- 5° Brix sugars is produced which is equivalent to a COD of 5000 - 25000 mg/L. By reverse osmosis,this sweet water can be separated into a sugar-free permeate for recycling and a concentrate with more than 20° Brix,which can be utilized as animal feed. The second study is on the effluent from production of modified potato starch,which is contaminated with spirochete bacteria resulting in problems in the wastewater treatment plant. By installing a membrane bioreactor,not only is this problem overcome but the general quality of the water at the discharge of the plant is improved. Overall,this paper demonstrates that membrane processes have a large potential in the water recovery and wastewater treatment in the food industry.展开更多
文摘Purpose: The present research was performed to evaluate the effect of food thickeners on the bitterness and dissolution of bitter drugs when co-administered to patients with dysphagia. Methods: Amlodipine besilate (AMPB) powder was used as a model drug. Starch- and xanthan gum-based food thickeners were examined, with swallowing-aid jelly as a reference. The line-spread test (LST), texture prolife analysis (TPA) were done firstly. In related to AMPB powder mixed with food thickeners solution, a conventional dissolution test simulating the oral cavity was performed, the amlodipine (AMP) concentration and taste sensor output for dissolved medium versus time profiles were developed. The dissolution test at pH 1.2 and 4.5, representing typical gastric conditions for younger or elderly people, was performed in two kinds of thickener solution and swallowing-aid jelly those were mixed with AMPB powder. Results: LST demonstrated that xanthan gum-based food thickeners fulfilled the requirements for patients with dysphagia but that starch-based food thickeners did not. In TPA, hardness and adhesiveness decreased proportionally as the concentration increased for both kinds of food thickener. Conventional dissolution test simulating oral cavity demonstrated the following bitterness ranking: xanthan gum-based food thickener Conclusion: Although xanthan gum-based food thickeners were successful in masking the bitterness of AMP, they may reduce its bioavailability in humans. The 7.1 and 4.7 (w/v) % starch-based thickener show bitterness inhibition under simulated oral cavity conditions and complete dissolution of AMP under simulated gastric conditions.
基金supported by Cooperation in Production,Study and Research of Science and Technology Major Projects of Fujian Province(2012N5004)Natural Science Foundation of Fujian Province(2012J01081)+1 种基金Scientific and Technological Innovation Team Support Plan of Institution of Higher Learning in Fujian Province([2012]03)Scientific and Technological Innovation Team Support Plan of Fujian Agriculture and Forestry University(cxtd12009)
文摘In this paper, the time dependent effects of various pressure treatments on the characteristics of lotus-seed starch which was modified by ultra-high pressure (UHP) were investigated. The results showed that the polarization cross of lotus-seed starch granules was weakening gradually with increasing the treatment time, which indicated the termination of their ordered crystallite structures. The morphologies of granules were collapsed once the UHP was kept at 500 MPa for 60 minutes. The particle size analysis demonstrated that the granule size and distribution of lotus-seed starches increased as the treatment time was prolonged. X-ray diffraction studies showed that the intensity of the feature diffraction peaks of starch decreased and eventually disappeared with increasing the treatment time, and B-type transformation pattern was observed. The Fourier transform infrared spectra (FTIR) analysis of starch showed that the UHP is a physical modification processing because no new groups formed. The research showed that UHP processing at certain degree is capable to achieve the modification of lotus-seed starch. It is of significance for the deep processing of lotus-seed products.
文摘The purpose of this research was to evaluate the effect of starch- and xanthan gum-based food thickeners on the bitterness and dissolution of amlodipine besilate (AMPB) loaded orally disintegrating tablets (ODT) for potential use with patients with dysphagia. A conventional dissolution test simulating the oral cavity was performed and the taste sensor output of the dissolved sample was evaluated over a 60-seconds period. When four types of AMPB loaded ODTs were tested alone, at 60 seconds, branded product (A) was the least bitter, followed by generic product (B)/generic product (C) which were equal, and finally generic product (D) which was the most bitter. Inhibition of bitterness of AMPB loaded ODTs mixed thickeners, 1.0 (w/v) % xanthan gum-based food thickener solution was significantly strong. The 7.1 (w/v) % and 4.7 (w/v) % starch-based food thickeners solution also effective in bitterness inhibition compared to the 2.4 (w/v) % starch-based food thickener solution. The dissolution test under pH 1.2 in related to 7.1 (w/v) % and 4.7 (w/v) % starch-based thickener contained each of AMPB loaded ODTs were associated with an almost complete amlodipine (AMP) dissolution (almost 90% at 10 minutes), whereas the 1.0, 2.0, 3.0 (w/v) % xanthan gum-based food thickener solution containing AMPB loaded ODTs did not show complete AMP dissolution and there were large variations in the initial dissolution stage. This suggests that a mixture of xanthan gum-based thickener and AMPB loaded ODT poses a risk of reduction of bioavailability. In conclusion, a mixture of 4.7 (w/v) % or 7.1 (w/v) % starch-based thickener with ODTs provides complete release of AMP and superior bitterness inhibition, so is the best choice for administration to patients with dysphagia.
文摘Despite the efforts to reduce its water consumption,the food industry still requires large amounts of water. Membrane processes have established themselves in the food industry at the beginning of the water loop for preparation of the intake water and at the end water loop for recovery and final treatment of the water. The focus of this paper is on two application studies related to water recovery and water treatment in the food industry. The first study is on water recovery from tank washing water in customized liquid sugar production. During the washing of the tanks,sweet water with 1°- 5° Brix sugars is produced which is equivalent to a COD of 5000 - 25000 mg/L. By reverse osmosis,this sweet water can be separated into a sugar-free permeate for recycling and a concentrate with more than 20° Brix,which can be utilized as animal feed. The second study is on the effluent from production of modified potato starch,which is contaminated with spirochete bacteria resulting in problems in the wastewater treatment plant. By installing a membrane bioreactor,not only is this problem overcome but the general quality of the water at the discharge of the plant is improved. Overall,this paper demonstrates that membrane processes have a large potential in the water recovery and wastewater treatment in the food industry.