Due to the poor heating performance and operating safety in low ambient temperature,traditional Air Source Heat Pump(ASHP)for Electric Vehicles(EVs)has many limits in cold region,which can be solved by the ASHP with r...Due to the poor heating performance and operating safety in low ambient temperature,traditional Air Source Heat Pump(ASHP)for Electric Vehicles(EVs)has many limits in cold region,which can be solved by the ASHP with refrigerant injection.During the start-up stage of EV in winter,the inlet air temperature of the in-car condenser is the same as the ambient temperature.At this situation,the performance and control strategy of the heat pump require special attention.In the present study,a series of experiments were carried out on the heating performance of the Refrigerant Injection Heat Pump(RIHP)system in start-up stage of EV,at the ambient temperature from–20℃ to–5℃.The effects of compressor speed and injected refrigerant state on the heating performance of the system were discussed in depth.According to the results,the control strategies during start-up stage have been discussed in the end of the article.The study provides a practical control strategy for the RIHP system during the start-up stage of electric vehicles,helping to efficiently operate electric vehicles in cold regions.展开更多
A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range,fixed output and multimode operation is presented in this paper.As a widely utilized power source im...A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range,fixed output and multimode operation is presented in this paper.As a widely utilized power source implement,a Li-battery is always used as the power supply for chips.Due to the internal resistance,a potential drop will be generated at the input terminal of the chip with an input current.A false shut down with a low supply voltage will happen if the input current is too large,leading to the degradation of the Li-battery's service life.To solve this problem,the inrush current is limited by introducing a new start-up state.All of the circuits have been implemented with the NUVOTON 0.6 μm CMOS process.The measurement results show that the inrush current can be limited below 1 A within all input supply ranges,and the power efficiency is higher than the conventional structure.展开更多
A nonlinear mathematical model of the low-frequency dynamics of the clustered multi-engine rocket propulsion system has been developed and the computations of the engine transient processes during the start-ups of the...A nonlinear mathematical model of the low-frequency dynamics of the clustered multi-engine rocket propulsion system has been developed and the computations of the engine transient processes during the start-ups of the four-engine propulsion system with a shared feed system have been made applied.Based on propulsion system start-up modeling the influence of the connectivity of engines in a cluster on the starting characteristics of individual engines is shown.In particular,an advanced nonlinear mathematical model of the pump cavitation phenomena is a distinctive feature of the mathematical model.The computation results showed that the asynchronous engines start-ups during rocket lift-off lead to severely nonlinear engine transients and clustered engine thrust misbalance.The influence of the rocket engines asynchronous start-ups on the clustered feed system transients depends on many factors,mainly on from the clustered feed system low-frequency dynamics,the magnitude of the disturbance and the phase difference between disturbances acting on different branches of the feed system.The deep lingering dips in the flow rate and pressure transients are possible due to the nonlinear dynamic interaction of the engines.In case of great pressure dips at the pump inlet(up to the pressure of saturated vapors during significant periods of start-up time)the cavitation breakdowns of the pumps of one or more engines from the cluster are possible.This can disrupt the operation of the entire propulsion system and leads to the failure of the launch vehicle mission.展开更多
基金support by the National Natural Science Foundation of China(No.51576203)。
文摘Due to the poor heating performance and operating safety in low ambient temperature,traditional Air Source Heat Pump(ASHP)for Electric Vehicles(EVs)has many limits in cold region,which can be solved by the ASHP with refrigerant injection.During the start-up stage of EV in winter,the inlet air temperature of the in-car condenser is the same as the ambient temperature.At this situation,the performance and control strategy of the heat pump require special attention.In the present study,a series of experiments were carried out on the heating performance of the Refrigerant Injection Heat Pump(RIHP)system in start-up stage of EV,at the ambient temperature from–20℃ to–5℃.The effects of compressor speed and injected refrigerant state on the heating performance of the system were discussed in depth.According to the results,the control strategies during start-up stage have been discussed in the end of the article.The study provides a practical control strategy for the RIHP system during the start-up stage of electric vehicles,helping to efficiently operate electric vehicles in cold regions.
基金supported by the National Natural Science Foundation of China(No.61106026)
文摘A double-stage start-up structure to limit the inrush current used in current-mode charge pump with wide input range,fixed output and multimode operation is presented in this paper.As a widely utilized power source implement,a Li-battery is always used as the power supply for chips.Due to the internal resistance,a potential drop will be generated at the input terminal of the chip with an input current.A false shut down with a low supply voltage will happen if the input current is too large,leading to the degradation of the Li-battery's service life.To solve this problem,the inrush current is limited by introducing a new start-up state.All of the circuits have been implemented with the NUVOTON 0.6 μm CMOS process.The measurement results show that the inrush current can be limited below 1 A within all input supply ranges,and the power efficiency is higher than the conventional structure.
文摘A nonlinear mathematical model of the low-frequency dynamics of the clustered multi-engine rocket propulsion system has been developed and the computations of the engine transient processes during the start-ups of the four-engine propulsion system with a shared feed system have been made applied.Based on propulsion system start-up modeling the influence of the connectivity of engines in a cluster on the starting characteristics of individual engines is shown.In particular,an advanced nonlinear mathematical model of the pump cavitation phenomena is a distinctive feature of the mathematical model.The computation results showed that the asynchronous engines start-ups during rocket lift-off lead to severely nonlinear engine transients and clustered engine thrust misbalance.The influence of the rocket engines asynchronous start-ups on the clustered feed system transients depends on many factors,mainly on from the clustered feed system low-frequency dynamics,the magnitude of the disturbance and the phase difference between disturbances acting on different branches of the feed system.The deep lingering dips in the flow rate and pressure transients are possible due to the nonlinear dynamic interaction of the engines.In case of great pressure dips at the pump inlet(up to the pressure of saturated vapors during significant periods of start-up time)the cavitation breakdowns of the pumps of one or more engines from the cluster are possible.This can disrupt the operation of the entire propulsion system and leads to the failure of the launch vehicle mission.