In this paper, transient phenomenon during start up process of a pump fed liquidrocket engine is investigated through numerical simulation. The engine studied in this workis designed such that engine systems are not w...In this paper, transient phenomenon during start up process of a pump fed liquidrocket engine is investigated through numerical simulation. The engine studied in this workis designed such that engine systems are not wetted with propellant until the engine is com-manded to start. This is achieved by positioning the valves for propellant admission at the inter-face of test stand/flight stage and the engine. To evaluate engine performance during starttransient for such systems, unsteady flow simulation was conducted using Method of Charac-teristics and equations for priming. The same has been reported in this work. The results indi-cated a brief period of abrupt pressure rise at pump upstream after opening of the propellantadmission valves, during the process of priming of engine systems at valve downstream.The peak pressure obtained was significantly higher than the propellant tank pressure as wellas the steady state pump suction pressure. The transitory pressure rise was found to occurdue to flow resistance at impeller inlet caused by formation of a forced vortex for orientingthe flow through impeller blades during off design transient regime. The maximum pressureat pump upstream, as computed from start transient simulation, was used as a design inputfor pump inlet feed lines. The engine was realized and subsequently qualified in a ground test facility. Hot test data obtained for pressure and flow rate during transient regime were found tobe in good agreement with the simulation results.展开更多
文摘In this paper, transient phenomenon during start up process of a pump fed liquidrocket engine is investigated through numerical simulation. The engine studied in this workis designed such that engine systems are not wetted with propellant until the engine is com-manded to start. This is achieved by positioning the valves for propellant admission at the inter-face of test stand/flight stage and the engine. To evaluate engine performance during starttransient for such systems, unsteady flow simulation was conducted using Method of Charac-teristics and equations for priming. The same has been reported in this work. The results indi-cated a brief period of abrupt pressure rise at pump upstream after opening of the propellantadmission valves, during the process of priming of engine systems at valve downstream.The peak pressure obtained was significantly higher than the propellant tank pressure as wellas the steady state pump suction pressure. The transitory pressure rise was found to occurdue to flow resistance at impeller inlet caused by formation of a forced vortex for orientingthe flow through impeller blades during off design transient regime. The maximum pressureat pump upstream, as computed from start transient simulation, was used as a design inputfor pump inlet feed lines. The engine was realized and subsequently qualified in a ground test facility. Hot test data obtained for pressure and flow rate during transient regime were found tobe in good agreement with the simulation results.