Consider a discrete time dynamical system x_(k+1)=f(x_k) on a compact metric space M, wheref: M→M is a continuous map. Let h:M→R^k be a continuous output function. Suppose that all ofthe positive orbits of f are den...Consider a discrete time dynamical system x_(k+1)=f(x_k) on a compact metric space M, wheref: M→M is a continuous map. Let h:M→R^k be a continuous output function. Suppose that all ofthe positive orbits of f are dense and that the system is observable. We prove that any outputtrajectory of the system determines f and h and M up to a homeomorphism.If M is a compactAbelian topological group and f is an ergodic translation, then any output trajectory determinesthe system up to a translation and a group isomorphism of the group.展开更多
The concepts of metric R0-algebra and Hilbert cube of type RO are introduced. A unified approximate reasoning theory in propositional caculus system ? and predicate calculus system (?) is established semantically as w...The concepts of metric R0-algebra and Hilbert cube of type RO are introduced. A unified approximate reasoning theory in propositional caculus system ? and predicate calculus system (?) is established semantically as well as syntactically, and a unified complete theorem is obtained.展开更多
文摘Consider a discrete time dynamical system x_(k+1)=f(x_k) on a compact metric space M, wheref: M→M is a continuous map. Let h:M→R^k be a continuous output function. Suppose that all ofthe positive orbits of f are dense and that the system is observable. We prove that any outputtrajectory of the system determines f and h and M up to a homeomorphism.If M is a compactAbelian topological group and f is an ergodic translation, then any output trajectory determinesthe system up to a translation and a group isomorphism of the group.
基金supported by the National Natural Science Foundation of China(Grant No.19331010).
文摘The concepts of metric R0-algebra and Hilbert cube of type RO are introduced. A unified approximate reasoning theory in propositional caculus system ? and predicate calculus system (?) is established semantically as well as syntactically, and a unified complete theorem is obtained.