In this paper, authors consider the existence, uniqueness and nonexistence of the radial ground state to the following p-laplacian equation: Delta(p)u + u(q) - \Du\(sigma) = 0, x epsilon Rn, where 2 less than or equal...In this paper, authors consider the existence, uniqueness and nonexistence of the radial ground state to the following p-laplacian equation: Delta(p)u + u(q) - \Du\(sigma) = 0, x epsilon Rn, where 2 less than or equal to p < n, q is subcritical exponent, i.e. p < p* - 1 = [n(p - 1) + p]/(n - p), sigma > 0. Applying the shooting argument, Schauder's fixed point theorem and some delicate estimates of auxiliary funtions, they study the influence of the parameters n, p, q, sigma > 0 on the existence, uniqueness and nonexistence of the radial ground state to the above p-laplacian equation.展开更多
文摘In this paper, authors consider the existence, uniqueness and nonexistence of the radial ground state to the following p-laplacian equation: Delta(p)u + u(q) - \Du\(sigma) = 0, x epsilon Rn, where 2 less than or equal to p < n, q is subcritical exponent, i.e. p < p* - 1 = [n(p - 1) + p]/(n - p), sigma > 0. Applying the shooting argument, Schauder's fixed point theorem and some delicate estimates of auxiliary funtions, they study the influence of the parameters n, p, q, sigma > 0 on the existence, uniqueness and nonexistence of the radial ground state to the above p-laplacian equation.