Experimental results related to solid state weldability of superplastic titanium alloys are presented. A correlation between superplastic flow and enhanced solid state weldability was established. It has been experim...Experimental results related to solid state weldability of superplastic titanium alloys are presented. A correlation between superplastic flow and enhanced solid state weldability was established. It has been experimentally shown that a drop in the lower superplastic flow temperature with decreasing mean grain size provides an opportunity to decrease the temperature at whicmethods for titanium alloys.展开更多
Based on the feasibility of isothermal superplastic solid state bonding of 40Cr and Cr12MoV steels, the surfaces of both steels to be bonded were ultra-fined through high frequency hardening, then the superplastic sol...Based on the feasibility of isothermal superplastic solid state bonding of 40Cr and Cr12MoV steels, the surfaces of both steels to be bonded were ultra-fined through high frequency hardening, then the superplastic solid state bonding were conducted, the microstructure and fracture surface of bonded joint were observed and analysed, and bonding mechanisms was researched. The experimental results show that with the sample surfaces of 4OCr and Cr12MoV steels after the high frequeney hardening, under the prepressing stress of 56. 6 MPa, initidl strain rate of 1.5 × 10^ -2 min^-1 and at the bonding temperature of800 -820℃, the superplastic solid state bonding can be carried out in about 3.5 min, and the joint strength is up to that of 40Cr steel base metal and the radial expansion ratio of the joint does not exceed 6%. The saperplastic solid state bonding parameter of both steels is within the ranges of the isothermal compressive superplastic deformation of Cr12MoV steel, and the deformation in Cr12MoV steel side near the interfacial zone of joint presents the characteristic of superplasticity. In bonding process, the atoms in two sides of joint interface have diffused each other.展开更多
Solid-liquid state bonding of Si3N4 ceramics with TiN-modified Ag-Cu-Ti brazing alloy was used'- to enhance joint strength. The effects of the TiN particles on the microstructures, interfacial reactions, and roo...Solid-liquid state bonding of Si3N4 ceramics with TiN-modified Ag-Cu-Ti brazing alloy was used'- to enhance joint strength. The effects of the TiN particles on the microstructures, interfacial reactions, and room-temperature properties of the joints were investigated. The results show that the TiN particles are gen- erally well dispersed in the Ag-Cu eutectic base and the interface between them is both clean and com-pact. Changes in the TiN volume fractions from 0 to 20% exert no noticeable effect on the interfacial reac-tion between Ag-Cu-Ti and the substrates. Other bonding parameters being constant, the TiN volume frac-tion in the filler material plays a key role in the joint properties. For TiN volume fractions below 20%, the joints are reinforced, especially joints with 5% and 20% TiN. The average shearing strength of joints with 5% TiN is 200.8 MPa, 30% higher than that of joints with no TiN (154.1 MPa). However, for TiN volumes frac- tions above 20%, the joint strengths decrease.展开更多
Solid-state diffusion bonding is an advanced joining technique, which has been widely used to join similar or dissimilar materials. Generally, it is easy to observe the diffusion behavior during dissimilar bonding, bu...Solid-state diffusion bonding is an advanced joining technique, which has been widely used to join similar or dissimilar materials. Generally, it is easy to observe the diffusion behavior during dissimilar bonding, but for similar bonding the diffusion behavior has yet been observed via experiments. In this study, the diffusion behavior at void tip was firstly observed during similar bonding of stainless steel. Scanning electron microscopy with energy dispersive spectroscopy was used to examine the interface charac- teristic and diffusion behavior. The results showed that a diffusion region was discovered at void tip. Element concentrations of diffusion region were more than those of void region, but less than those of bonded region. This behavior indicated that the diffusion was ongoing at void tip, but the perfect bond has yet formed. The diffusion region was attributed to the interface diffusion from adjacent region to void tip due to the stress gradient along bonding interface. The mass accumulation at void tip transformed the sharp void tip into smooth one at the beginning of void shrinkage, and then resulted in shorter voids.展开更多
Solid liquid state pressure bonding of Si 3N 4 ceramics with aluminum based alloys, which contain a small amount of intermetallic compounds Al 3Ti or Al 3Zr, was investigated. With this new method, the heat resistant ...Solid liquid state pressure bonding of Si 3N 4 ceramics with aluminum based alloys, which contain a small amount of intermetallic compounds Al 3Ti or Al 3Zr, was investigated. With this new method, the heat resistant properties of the bonding zone metal are improved, and the joints’ strengths at high temperature is increased. The joints’ shear strength at room temperature and at 600 ℃ reach 126~133 MPa and 32~34 MPa, respectively, with suitable bonding pressure. The reaction between aluminum and Si 3N 4 ceramics, which produces Al Si N O type compounds is the dominant interfacial reaction, while the reactions between the second active element Ti or Zr in the aluminum based alloys and Si 3N 4 ceramics also occur to some extend. [展开更多
We have studied the temporal bond polarisabilities of para-nitroaniline from the Raman intensities by the algorithm proposed by Wu et al. in 1987 (Tian B, Wu G, Liu G 1987 J. Chem. Phys. 87 7300). The bond polarisab...We have studied the temporal bond polarisabilities of para-nitroaniline from the Raman intensities by the algorithm proposed by Wu et al. in 1987 (Tian B, Wu G, Liu G 1987 J. Chem. Phys. 87 7300). The bond polarisabilities provide much information concerning the electronic structure of the non-resonant Raman excited virtual state. At the initial moment by the 514.5 nm excitation, the tendency of the excited electrons (mapped out by the bond polarisabilities) is to spread to the molecular periphery, and the electronic structure of the Raman virtual state is close to the pseudoquinonoidic state. When the final stage of relaxation is approached, the bond polarisabilities of those peripheral bonds relax faster than those closer to the molecular core, the phenyl ring. The molecule is in the benzenoidic form as demonstrated by the bond polarisabilities after relaxation.展开更多
Investigating the impact of microhydration on the excited-states and electronic excitation properties of biomolecules has remained one of the important yet challenging aspects of science because of the complexity of d...Investigating the impact of microhydration on the excited-states and electronic excitation properties of biomolecules has remained one of the important yet challenging aspects of science because of the complexity of developing models. However, with the advent of computational chemistry methods such as TD-DFT, many useful insights about the electronic excitation energy and excited-state nature of biomolecules can be explored. Accordingly, in our study, we have incorporated the TD-DFT/wB97XD/cc-pVTZ method to study the excited state properties of N-acetyl phenylalanine amide (NAPA-A(H<sub>2</sub>O) <sub>n</sub>) (n = 1 to 4) clusters from ground to the tenth lowest gaseous singlet excited state. We found that the C=O bond length gradually increases both in N-terminal amide and C-terminal amide after the sequential addition of water molecules because of intermolecular H-bonding and this intermolecular H-bonding becomes weaker after the sequential addition of H<sub>2</sub>O molecules. The UV absorption maxima of NAPA-A (H<sub>2</sub>O)<sub>n</sub> (n = 1 - 4) clusters consisted of two peaks that are S<sub>5</sub>←S<sub>0</sub> (1<sup>st</sup> absorption) and S<sub>6</sub>←S<sub>0</sub> (2<sup>nd</sup> absorption) excitations. The first absorption maxima were blue-shifted with the increase in oscillator strength. This means that strong H-bonds reduce the charge transfer and make clusters more rigid. On the other hand, the second absorption maxima were red-shifted with the decrease in oscillator strength. In the ECD spectra, the negative bands indicate the presence of an amide bond and L-configuration of micro hydrated NAPA-A clusters. Finally, our calculated absorption and fluorescence energy confirm that all the NAPA-A (H<sub>2</sub>O) <sub>n</sub> (n = 0 - 4) clusters revert to the ground state from the fluorescent state by emitting around 5.490 eV of light.展开更多
The distribution relationship between the profits of state-owned enterprises and the state has been constantly changing with the times. From the state implementing the policy that state-owned enterprises not pay profi...The distribution relationship between the profits of state-owned enterprises and the state has been constantly changing with the times. From the state implementing the policy that state-owned enterprises not pay profits to the state in 1994 to the constant growth of stateowned enterprises in the 21st century,their profits have become more and more abundant. Until 2007,the state issued a document stipulates that the state-owned enterprises should pay part of their profits to the state,but at the initial stage of trial implementation of the policy,the implementation was not effective,and finally in 2010 the state officially announced the collection of profits from state-owned enterprises and increased the proportion of collection. From the perspective of agricultural state-owned enterprises,using the difference-in-difference( DID)model,this paper studied the state policy of increasing the profit delivery proportion of state-owned enterprises in 2020. Through CSMAR database,we selected agricultural state-owned listed companies in the 2008-2013 as samples,tested the impact of the implementation of the new policy in 2010 on the operation performance of agricultural state-owned enterprises,evaluated the implementation effect of the policy through comparing the operation performance before and after the policy,and explored whether the policy has an impact on the bond rating. Through empirical research,it found that increasing the profit delivery proportion of state-owned enterprises is helpful for improving the operation performance of state-owned enterprises and improving the quality of bond ratings,and this policy has more prominent effects on stimulating the performance of monopolistic state-owned enterprises. Therefore,collection of some profits from state-owned enterprises can promote better development of state-owned enterprises and also benefit both the state and the people.展开更多
In the ultrasonic nondestructive evaluation of the quality of solid state welded joints, such as friction bonding and diffusion bonding, the main difficulty is the identification of micro defects which are most likel...In the ultrasonic nondestructive evaluation of the quality of solid state welded joints, such as friction bonding and diffusion bonding, the main difficulty is the identification of micro defects which are most likely to emerge in the welding process. The ultrasonic echo on the screen of a commercial ultrasonic detector due to a micro defect is so weak that it is completely masked by noise, and impossible to be pointed out. In the present paper, wavelet analysis (WA) is utilized to process A scan ultrasonic signals from weak bonding defects in friction bonding joints and porosity in diffusion bonding joints. First, perception of WA for engineers is given, which demonstrates the physical mechanism of WA when applied to signal processing. From this point of view, WA can be understood easily and more thoroughly. Then the signals from welding joints are decomposed into a time scale plane by means of WA. We notice that noise and the signal echo attributed to the micro defect occupy different scales, which make it possible to enhance the signal to noise ratio of the signals by proper selection and threshold processing of the time scale components of the signals, followed by reconstruction of the processed components.展开更多
Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has prove...Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has proved the feasibility of TSCB. However, the thermal stress–strain process during bonding, which is of very important significance in revealing the mechanism of TSCB, was not analysed. In this paper, finite element analysis method is adopted to numerically study the thermal elasto-plastic stress–strain cycle of thermal self-compressing bonding. It is found that due to the localized heating, a non-uniform temperature distribution is formed during bonding, with the highest temperature existed on the bond interface. The expansion of high temperature materials adjacent to the bond interface are restrained by surrounding cool materials and rigid restraints, and thus an internal elasto-plastic stress–strain field is developed by itself which makes the bond interface subjected to thermal compressive action. This thermal self-compressing action combined with the high temperature on the bond interface promotes the atom diffusion across the bond interface to produce solid-state joints. Due to the relatively large plastic deformation, rigid restraint TSCB obtains sound joints in relatively short time compared to diffusion bonding.展开更多
文摘Experimental results related to solid state weldability of superplastic titanium alloys are presented. A correlation between superplastic flow and enhanced solid state weldability was established. It has been experimentally shown that a drop in the lower superplastic flow temperature with decreasing mean grain size provides an opportunity to decrease the temperature at whicmethods for titanium alloys.
基金This research was supported by National Natural Science Foundation of China ( No. 50774029) and the Foundation of Henan Province Outstanding Youth Scientist ( No. 074100510011 ).
文摘Based on the feasibility of isothermal superplastic solid state bonding of 40Cr and Cr12MoV steels, the surfaces of both steels to be bonded were ultra-fined through high frequency hardening, then the superplastic solid state bonding were conducted, the microstructure and fracture surface of bonded joint were observed and analysed, and bonding mechanisms was researched. The experimental results show that with the sample surfaces of 4OCr and Cr12MoV steels after the high frequeney hardening, under the prepressing stress of 56. 6 MPa, initidl strain rate of 1.5 × 10^ -2 min^-1 and at the bonding temperature of800 -820℃, the superplastic solid state bonding can be carried out in about 3.5 min, and the joint strength is up to that of 40Cr steel base metal and the radial expansion ratio of the joint does not exceed 6%. The saperplastic solid state bonding parameter of both steels is within the ranges of the isothermal compressive superplastic deformation of Cr12MoV steel, and the deformation in Cr12MoV steel side near the interfacial zone of joint presents the characteristic of superplasticity. In bonding process, the atoms in two sides of joint interface have diffused each other.
基金Supported by the National Natural Science Foundation of China (No. 50075046)
文摘Solid-liquid state bonding of Si3N4 ceramics with TiN-modified Ag-Cu-Ti brazing alloy was used'- to enhance joint strength. The effects of the TiN particles on the microstructures, interfacial reactions, and room-temperature properties of the joints were investigated. The results show that the TiN particles are gen- erally well dispersed in the Ag-Cu eutectic base and the interface between them is both clean and com-pact. Changes in the TiN volume fractions from 0 to 20% exert no noticeable effect on the interfacial reac-tion between Ag-Cu-Ti and the substrates. Other bonding parameters being constant, the TiN volume frac-tion in the filler material plays a key role in the joint properties. For TiN volume fractions below 20%, the joints are reinforced, especially joints with 5% and 20% TiN. The average shearing strength of joints with 5% TiN is 200.8 MPa, 30% higher than that of joints with no TiN (154.1 MPa). However, for TiN volumes frac- tions above 20%, the joint strengths decrease.
基金financially supported by the National Natural Science Foundation of China (Nos.51505386 and 51275416)the Fundamental Research funds for the Central Universities (No.3102017GX06003)
文摘Solid-state diffusion bonding is an advanced joining technique, which has been widely used to join similar or dissimilar materials. Generally, it is easy to observe the diffusion behavior during dissimilar bonding, but for similar bonding the diffusion behavior has yet been observed via experiments. In this study, the diffusion behavior at void tip was firstly observed during similar bonding of stainless steel. Scanning electron microscopy with energy dispersive spectroscopy was used to examine the interface charac- teristic and diffusion behavior. The results showed that a diffusion region was discovered at void tip. Element concentrations of diffusion region were more than those of void region, but less than those of bonded region. This behavior indicated that the diffusion was ongoing at void tip, but the perfect bond has yet formed. The diffusion region was attributed to the interface diffusion from adjacent region to void tip due to the stress gradient along bonding interface. The mass accumulation at void tip transformed the sharp void tip into smooth one at the beginning of void shrinkage, and then resulted in shorter voids.
文摘Solid liquid state pressure bonding of Si 3N 4 ceramics with aluminum based alloys, which contain a small amount of intermetallic compounds Al 3Ti or Al 3Zr, was investigated. With this new method, the heat resistant properties of the bonding zone metal are improved, and the joints’ strengths at high temperature is increased. The joints’ shear strength at room temperature and at 600 ℃ reach 126~133 MPa and 32~34 MPa, respectively, with suitable bonding pressure. The reaction between aluminum and Si 3N 4 ceramics, which produces Al Si N O type compounds is the dominant interfacial reaction, while the reactions between the second active element Ti or Zr in the aluminum based alloys and Si 3N 4 ceramics also occur to some extend. [
基金Project supported by the Natural Science Foundation of Beijing,China (Grant No. 2082006)the National Natural Science Foundation of China (Grant No. 20773073)+1 种基金the Key Grant Project of Chinese Ministry of Education (Grant No. 306020)the Special Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20060003050)
文摘We have studied the temporal bond polarisabilities of para-nitroaniline from the Raman intensities by the algorithm proposed by Wu et al. in 1987 (Tian B, Wu G, Liu G 1987 J. Chem. Phys. 87 7300). The bond polarisabilities provide much information concerning the electronic structure of the non-resonant Raman excited virtual state. At the initial moment by the 514.5 nm excitation, the tendency of the excited electrons (mapped out by the bond polarisabilities) is to spread to the molecular periphery, and the electronic structure of the Raman virtual state is close to the pseudoquinonoidic state. When the final stage of relaxation is approached, the bond polarisabilities of those peripheral bonds relax faster than those closer to the molecular core, the phenyl ring. The molecule is in the benzenoidic form as demonstrated by the bond polarisabilities after relaxation.
文摘Investigating the impact of microhydration on the excited-states and electronic excitation properties of biomolecules has remained one of the important yet challenging aspects of science because of the complexity of developing models. However, with the advent of computational chemistry methods such as TD-DFT, many useful insights about the electronic excitation energy and excited-state nature of biomolecules can be explored. Accordingly, in our study, we have incorporated the TD-DFT/wB97XD/cc-pVTZ method to study the excited state properties of N-acetyl phenylalanine amide (NAPA-A(H<sub>2</sub>O) <sub>n</sub>) (n = 1 to 4) clusters from ground to the tenth lowest gaseous singlet excited state. We found that the C=O bond length gradually increases both in N-terminal amide and C-terminal amide after the sequential addition of water molecules because of intermolecular H-bonding and this intermolecular H-bonding becomes weaker after the sequential addition of H<sub>2</sub>O molecules. The UV absorption maxima of NAPA-A (H<sub>2</sub>O)<sub>n</sub> (n = 1 - 4) clusters consisted of two peaks that are S<sub>5</sub>←S<sub>0</sub> (1<sup>st</sup> absorption) and S<sub>6</sub>←S<sub>0</sub> (2<sup>nd</sup> absorption) excitations. The first absorption maxima were blue-shifted with the increase in oscillator strength. This means that strong H-bonds reduce the charge transfer and make clusters more rigid. On the other hand, the second absorption maxima were red-shifted with the decrease in oscillator strength. In the ECD spectra, the negative bands indicate the presence of an amide bond and L-configuration of micro hydrated NAPA-A clusters. Finally, our calculated absorption and fluorescence energy confirm that all the NAPA-A (H<sub>2</sub>O) <sub>n</sub> (n = 0 - 4) clusters revert to the ground state from the fluorescent state by emitting around 5.490 eV of light.
文摘The distribution relationship between the profits of state-owned enterprises and the state has been constantly changing with the times. From the state implementing the policy that state-owned enterprises not pay profits to the state in 1994 to the constant growth of stateowned enterprises in the 21st century,their profits have become more and more abundant. Until 2007,the state issued a document stipulates that the state-owned enterprises should pay part of their profits to the state,but at the initial stage of trial implementation of the policy,the implementation was not effective,and finally in 2010 the state officially announced the collection of profits from state-owned enterprises and increased the proportion of collection. From the perspective of agricultural state-owned enterprises,using the difference-in-difference( DID)model,this paper studied the state policy of increasing the profit delivery proportion of state-owned enterprises in 2020. Through CSMAR database,we selected agricultural state-owned listed companies in the 2008-2013 as samples,tested the impact of the implementation of the new policy in 2010 on the operation performance of agricultural state-owned enterprises,evaluated the implementation effect of the policy through comparing the operation performance before and after the policy,and explored whether the policy has an impact on the bond rating. Through empirical research,it found that increasing the profit delivery proportion of state-owned enterprises is helpful for improving the operation performance of state-owned enterprises and improving the quality of bond ratings,and this policy has more prominent effects on stimulating the performance of monopolistic state-owned enterprises. Therefore,collection of some profits from state-owned enterprises can promote better development of state-owned enterprises and also benefit both the state and the people.
基金This work is financially supported by the Beijing Natural Science Foundation!(No.2 962 0 0 4 )
文摘In the ultrasonic nondestructive evaluation of the quality of solid state welded joints, such as friction bonding and diffusion bonding, the main difficulty is the identification of micro defects which are most likely to emerge in the welding process. The ultrasonic echo on the screen of a commercial ultrasonic detector due to a micro defect is so weak that it is completely masked by noise, and impossible to be pointed out. In the present paper, wavelet analysis (WA) is utilized to process A scan ultrasonic signals from weak bonding defects in friction bonding joints and porosity in diffusion bonding joints. First, perception of WA for engineers is given, which demonstrates the physical mechanism of WA when applied to signal processing. From this point of view, WA can be understood easily and more thoroughly. Then the signals from welding joints are decomposed into a time scale plane by means of WA. We notice that noise and the signal echo attributed to the micro defect occupy different scales, which make it possible to enhance the signal to noise ratio of the signals by proper selection and threshold processing of the time scale components of the signals, followed by reconstruction of the processed components.
基金Supported by National Natural Science Foundation of China(Grant No.51705491)
文摘Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has proved the feasibility of TSCB. However, the thermal stress–strain process during bonding, which is of very important significance in revealing the mechanism of TSCB, was not analysed. In this paper, finite element analysis method is adopted to numerically study the thermal elasto-plastic stress–strain cycle of thermal self-compressing bonding. It is found that due to the localized heating, a non-uniform temperature distribution is formed during bonding, with the highest temperature existed on the bond interface. The expansion of high temperature materials adjacent to the bond interface are restrained by surrounding cool materials and rigid restraints, and thus an internal elasto-plastic stress–strain field is developed by itself which makes the bond interface subjected to thermal compressive action. This thermal self-compressing action combined with the high temperature on the bond interface promotes the atom diffusion across the bond interface to produce solid-state joints. Due to the relatively large plastic deformation, rigid restraint TSCB obtains sound joints in relatively short time compared to diffusion bonding.