In this paper,(500 nm 1%+5μm 3%)bimodal scale Al2O3p/AZ31 composites was fabricated by solid state synthesis and the effect of bimodal scale Al2O3 particulates on its dynamic recrystallization behavior and mechanical...In this paper,(500 nm 1%+5μm 3%)bimodal scale Al2O3p/AZ31 composites was fabricated by solid state synthesis and the effect of bimodal scale Al2O3 particulates on its dynamic recrystallization behavior and mechanical properties was investigated.The optical microscopy,scanning electron microscopy,transmission electron microscopy and electron universal strength tester composites were used to characterize the composites.The results indicate that the grains size of the composites are significantly refined and the mechanical properties are obviously improved.Due to the presence of the bimodal scale Al2o3 particulates,the high-density dislocation zone is formed around nano-Al2o3p and the particle deformation zone is formed near micron-ABOap.These zones are ideal sites for the formation of recrystallization nucleus.Meanwhile,the addition of the bimodal scale Al2o3 particulates may delay or hinder the growth of matrix grain through the pining effect on the grain boundaries,resulting in significantly improving the yield strength and tensile strength of Al2O3p/AZ31 composites.展开更多
In this paper, a unified internal state variable(ISV) model for predicting microstructure evolution during hot working process of AZ80 magnesium alloy was developed. A novel aspect of the proposed model is that the in...In this paper, a unified internal state variable(ISV) model for predicting microstructure evolution during hot working process of AZ80 magnesium alloy was developed. A novel aspect of the proposed model is that the interactive effects of material hardening, recovery and dynamic recrystallization(DRX) on the characteristic deformation behavior were considered by incorporating the evolution laws of viscoplastic flow, dislocation activities, DRX nucleation and boundary migration in a coupled manner. The model parameters were calibrated based on the experimental data analysis and genetic algorithm(GA) based objective optimization. The predicted flow stress, DRX fraction and average grain size match well with experimental results. The proposed model was embedded in the finite element(FE) software DEFORM-3 D via user defined subroutine to simulate the hot compression and equal channel angular extrusion(ECAE) processes. The heterogeneous microstructure distributions at different deformation zones and the dislocation density evolution with competitive deformation mechanisms were captured.This study can provide a theoretical solution for the hot working problems of magnesium alloy.展开更多
The dependence of α-phase size on flow stress was characterized by a proposed kinetic model during dynamic recrystallization (DRX) steady state in Ti60 alloy. Accord- ing to the isothermal compression tests, the in...The dependence of α-phase size on flow stress was characterized by a proposed kinetic model during dynamic recrystallization (DRX) steady state in Ti60 alloy. Accord- ing to the isothermal compression tests, the influence of deformation parameters on the steady-state flow stress was analyzed and the constitutive equation was established to predict the steady-state flow stress under different defor- mation temperatures and strain rates. A power-law rela- tionship between the DRX average grain size and steady- state flow stress with an exponent of -2 is obtained from the dynamic balance during DRX steady state. The effect of deformation parameters on at-phase size was observed through the microstructure after deformation, and the applicability of the model for Ti60 alloy was verified by the comparison between predicted and experimental data.展开更多
To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11...To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11.30 mm.The mechanisms for the improved formability and the deformation behaviors during the planar stretch forming are systematically investigated based on the planar stress states.The Schmid factor for deformation mechanisms are calculated,the results reveal that planar stress states extremely affect the Schmid factor for{10-12}twinning.The detwinning is activated and the prismatic slip is enhanced in the pre-twinned sheet,especially under the planar extension stress state in the outer region.Consequently,the thickness-direction strain is accommodated better.The dynamic recrystallization(DRX)type is continuous DRX(CDRX)regardless of the planar stress state.However,the CDRX degree is greater under the planar extension stress state.Some twin lattices deviate from the perfect{10-12}twinning relation due to the planar compression stress state and the CDRX.The basal texture is weakened when the planar stress state tends to change the texture components.展开更多
Hot compression tests of microalloyed forging steels 38MnVS were carried out on the Gleeble-3800 thermo-mechanical simulator at the deformation temperatures from 950 to 1 150 ℃ with the strain rates ranging from 0.1 ...Hot compression tests of microalloyed forging steels 38MnVS were carried out on the Gleeble-3800 thermo-mechanical simulator at the deformation temperatures from 950 to 1 150 ℃ with the strain rates ranging from 0.1 to 10 s^(-1). The effects of the deformation temperature and strain rate on the austenite dynamic recrystallization and microstructural changes were researched. The experimental results show that the dynamic recrystallization accelerated with the increase of the deformation temperatures and the decrease of the strain rate. The activation energy of dynamic recrystallization was calculated, which was about 275.453 kJ/mol. The relation between the dynamic recrystallization and the Z-parameter was investigated, and the state chart of the dynamic recrystallization of the microalloyed forging steel 38MnVS was made according to the experimental data and the deformation parameters.展开更多
The thermal deformation behaviors of the as-cast and wrought modified IN617 nickel-based heat-resistant alloys at different temperatures(1000–1180℃)and strain rates(0.01–1 s^(−1))were studied.The constitutive equat...The thermal deformation behaviors of the as-cast and wrought modified IN617 nickel-based heat-resistant alloys at different temperatures(1000–1180℃)and strain rates(0.01–1 s^(−1))were studied.The constitutive equation was established to describe the relationship of the flow stress,temperature,and strain rate during thermal deformation.The effect of the thermal deformation conditions on the microstructure evolution of alloys was studied using electron backscatter diffraction.The results revealed that the thermal deformation activation energy of the as-cast alloy was greater than that of the wrought alloy.The dynamic recrystallization(DRX)process is slow at intermediate strain rate(0.1 s^(−1))due to the comprehensive influence of various factors,such as the critical strain of DRX nucleation and stored energy.The DRX volume fraction increases with the improvement of deformation temperature.The varied dynamic softening mechanisms induce the different thermal deformation behaviors of as-cast and wrought alloys.The dynamic recovery,discontinuous dynamic recrystallization(DDRX)and nucleation at slip zone caused by strain incompatibility in grains were observed during thermal deformation of as-cast alloys.In the process of thermal deformation of wrought alloys,DDRX was the primary dynamic crystallization mechanism.The continuous dynamic recrystallization was an auxiliary nucleation mechanism.展开更多
基金the National Key Research and Development Program(2019YFB2006500)National Natural Science Foundation of China(51404082).
文摘In this paper,(500 nm 1%+5μm 3%)bimodal scale Al2O3p/AZ31 composites was fabricated by solid state synthesis and the effect of bimodal scale Al2O3 particulates on its dynamic recrystallization behavior and mechanical properties was investigated.The optical microscopy,scanning electron microscopy,transmission electron microscopy and electron universal strength tester composites were used to characterize the composites.The results indicate that the grains size of the composites are significantly refined and the mechanical properties are obviously improved.Due to the presence of the bimodal scale Al2o3 particulates,the high-density dislocation zone is formed around nano-Al2o3p and the particle deformation zone is formed near micron-ABOap.These zones are ideal sites for the formation of recrystallization nucleus.Meanwhile,the addition of the bimodal scale Al2o3 particulates may delay or hinder the growth of matrix grain through the pining effect on the grain boundaries,resulting in significantly improving the yield strength and tensile strength of Al2O3p/AZ31 composites.
基金funding supported by National Natural Science Foundation of China(No.52175285)Beijing Municipal Natural Science Foundation(No.3182025)+1 种基金National Defense Science and Technology Rapid support Project(No.61409230113)Scientific and Technological Innovation Foundation of Shunde Graduate School,USTB and Fundamental Research Funds for the Central Universities(No.FRFBD-20-08A,FRF-TP-20-009A2)。
文摘In this paper, a unified internal state variable(ISV) model for predicting microstructure evolution during hot working process of AZ80 magnesium alloy was developed. A novel aspect of the proposed model is that the interactive effects of material hardening, recovery and dynamic recrystallization(DRX) on the characteristic deformation behavior were considered by incorporating the evolution laws of viscoplastic flow, dislocation activities, DRX nucleation and boundary migration in a coupled manner. The model parameters were calibrated based on the experimental data analysis and genetic algorithm(GA) based objective optimization. The predicted flow stress, DRX fraction and average grain size match well with experimental results. The proposed model was embedded in the finite element(FE) software DEFORM-3 D via user defined subroutine to simulate the hot compression and equal channel angular extrusion(ECAE) processes. The heterogeneous microstructure distributions at different deformation zones and the dislocation density evolution with competitive deformation mechanisms were captured.This study can provide a theoretical solution for the hot working problems of magnesium alloy.
基金financially supported by the National Natural Science Foundation of China (No.51205319)the Natural Science Foundation of Shannxi Province (No.2015JQ5152)the Fundamental Research Funds for the Central Universities (No.3102016ZY010)
文摘The dependence of α-phase size on flow stress was characterized by a proposed kinetic model during dynamic recrystallization (DRX) steady state in Ti60 alloy. Accord- ing to the isothermal compression tests, the influence of deformation parameters on the steady-state flow stress was analyzed and the constitutive equation was established to predict the steady-state flow stress under different defor- mation temperatures and strain rates. A power-law rela- tionship between the DRX average grain size and steady- state flow stress with an exponent of -2 is obtained from the dynamic balance during DRX steady state. The effect of deformation parameters on at-phase size was observed through the microstructure after deformation, and the applicability of the model for Ti60 alloy was verified by the comparison between predicted and experimental data.
基金the Central Government Guided Local Science and Technology Development Projects(YDZJSX2021A010)China Postdoctoral Science Foundation(No.2022M710541)+5 种基金the National Natural Science Foundation of China(51704209,52274397,U1810208)the Projects of International Cooperation in Shanxi(201803D421086)Shanxi Province Patent Promotion Implementation Fund(20200718)Research Project Supported by Shanxi Scholarship Council of China(2022-038)Science and Technology Major Project of Shanxi Province(20191102008,20191102007,20181101008)Taishan Scholars Project Special Fund(2021)。
文摘To investigate the role of pre-twins in Mg alloy sheets during warm planar deformation,the stretch forming is conducted at 200℃.Results suggest the formability of the pre-twinned AZ31 Mg alloy sheet is enhanced to 11.30 mm.The mechanisms for the improved formability and the deformation behaviors during the planar stretch forming are systematically investigated based on the planar stress states.The Schmid factor for deformation mechanisms are calculated,the results reveal that planar stress states extremely affect the Schmid factor for{10-12}twinning.The detwinning is activated and the prismatic slip is enhanced in the pre-twinned sheet,especially under the planar extension stress state in the outer region.Consequently,the thickness-direction strain is accommodated better.The dynamic recrystallization(DRX)type is continuous DRX(CDRX)regardless of the planar stress state.However,the CDRX degree is greater under the planar extension stress state.Some twin lattices deviate from the perfect{10-12}twinning relation due to the planar compression stress state and the CDRX.The basal texture is weakened when the planar stress state tends to change the texture components.
文摘Hot compression tests of microalloyed forging steels 38MnVS were carried out on the Gleeble-3800 thermo-mechanical simulator at the deformation temperatures from 950 to 1 150 ℃ with the strain rates ranging from 0.1 to 10 s^(-1). The effects of the deformation temperature and strain rate on the austenite dynamic recrystallization and microstructural changes were researched. The experimental results show that the dynamic recrystallization accelerated with the increase of the deformation temperatures and the decrease of the strain rate. The activation energy of dynamic recrystallization was calculated, which was about 275.453 kJ/mol. The relation between the dynamic recrystallization and the Z-parameter was investigated, and the state chart of the dynamic recrystallization of the microalloyed forging steel 38MnVS was made according to the experimental data and the deformation parameters.
基金This research was supported by the National Energy Application Technology Research and Engineering Demonstration Program(NY20150101).
文摘The thermal deformation behaviors of the as-cast and wrought modified IN617 nickel-based heat-resistant alloys at different temperatures(1000–1180℃)and strain rates(0.01–1 s^(−1))were studied.The constitutive equation was established to describe the relationship of the flow stress,temperature,and strain rate during thermal deformation.The effect of the thermal deformation conditions on the microstructure evolution of alloys was studied using electron backscatter diffraction.The results revealed that the thermal deformation activation energy of the as-cast alloy was greater than that of the wrought alloy.The dynamic recrystallization(DRX)process is slow at intermediate strain rate(0.1 s^(−1))due to the comprehensive influence of various factors,such as the critical strain of DRX nucleation and stored energy.The DRX volume fraction increases with the improvement of deformation temperature.The varied dynamic softening mechanisms induce the different thermal deformation behaviors of as-cast and wrought alloys.The dynamic recovery,discontinuous dynamic recrystallization(DDRX)and nucleation at slip zone caused by strain incompatibility in grains were observed during thermal deformation of as-cast alloys.In the process of thermal deformation of wrought alloys,DDRX was the primary dynamic crystallization mechanism.The continuous dynamic recrystallization was an auxiliary nucleation mechanism.
文摘采用Gleeble-1500D热模拟试验机研究30%SiCp/Al复合材料在温度为623~773 K、应变速率为0.01~10 s-1下的热变形及动态再结晶行为。结果表明:材料的高温流变应力-应变曲线主要以动态再结晶软化机制为特征,峰值应力随变形温度降低或应变速率升高而增大,材料热激活能为272.831 k J/mol。以试验数据为基础,建立q-s和?q/?s-s曲线,从而进一步获得动态再结晶的临界应变和稳态应变,通过试验数据的回归分析,建立动态再结晶的临界应变模型和稳态应变模型,并在此基础上,获得所需要材料的动态再结晶图。