This paper addresses the challenge of identifying abnormal states in Lithium-ion Battery(LiB)time series data.As the energy sector increasingly focuses on integrating distributed energy resources,Virtual Power Plants(...This paper addresses the challenge of identifying abnormal states in Lithium-ion Battery(LiB)time series data.As the energy sector increasingly focuses on integrating distributed energy resources,Virtual Power Plants(VPP)have become a vital new framework for energy management.LiBs are key in this context,owing to their high-efficiency energy storage capabilities essential for VPP operations.However,LiBs are prone to various abnormal states like overcharging,over-discharging,and internal short circuits,which impede power transmission efficiency.Traditional methods for detecting such abnormalities in LiB are too broad and lack precision for the dynamic and irregular nature of LiB data.In response,we introduce an innovative method:a Long Short-Term Memory(LSTM)autoencoder based on Dynamic Frequency Memory and Correlation Attention(DFMCA-LSTM-AE).This unsupervised,end-to-end approach is specifically designed for dynamically monitoring abnormal states in LiB data.The method starts with a Dynamic Frequency Fourier Transform module,which dynamically captures the frequency characteristics of time series data across three scales,incorporating a memory mechanism to reduce overgeneralization of abnormal frequencies.This is followed by integrating LSTM into both the encoder and decoder,enabling the model to effectively encode and decode the temporal relationships in the time series.Empirical tests on a real-world LiB dataset demonstrate that DFMCA-LSTM-AE outperforms existing models,achieving an average Area Under the Curve(AUC)of 90.73%and an F1 score of 83.83%.These results mark significant improvements over existing models,ranging from 2.4%–45.3%for AUC and 1.6%–28.9%for F1 score,showcasing the model’s enhanced accuracy and reliability in detecting abnormal states in LiB data.展开更多
Cognitive state detection using electroencephalogram(EEG)signals for various tasks has attracted significant research attention.However,it is difficult to further improve the performance of crosssubject cognitive stat...Cognitive state detection using electroencephalogram(EEG)signals for various tasks has attracted significant research attention.However,it is difficult to further improve the performance of crosssubject cognitive state detection.Further,most of the existing deep learning models will degrade significantly when limited training samples are given,and the feature hierarchical relationships are ignored.To address the above challenges,we propose an efficient interpretation model based on multiple capsule networks for cross-subject EEG cognitive state detection,termed as Efficient EEG-based Multi-Capsule Framework(E3GCAPS).Specifically,we use a selfexpression module to capture the potential connections between samples,which is beneficial to alleviate the sensitivity of outliers that are caused by the individual differences of cross-subject EEG.In addition,considering the strong correlation between cognitive states and brain function connection mode,the dynamic subcapsule-based spatial attention mechanism is introduced to explore the spatial relationship of multi-channel 1D EEG data,in which multichannel 1D data greatly improving the training efficiency while preserving the model performance.The effectiveness of the E3GCAPS is validated on the Fatigue-Awake EEG Dataset(FAAD)and the SJTU Emotion EEG Dataset(SEED).Experimental results show E3GCAPS can achieve remarkable results on the EEG-based cross-subject cognitive state detection under different tasks.展开更多
To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root u...To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root unscented Kalman filter(MASUKF)is proposed.The MASUKF is composed of sigma points calculation,time update,modified state jumping detec-tion,and measurement update.Compared with the filters used in the existing literature on MOEs estimation,it has three main characteristics.Firstly,the state vector is augmented from six to nine by the added thrust acceleration terms,which makes the fil-ter additionally give the state-jumping-thrust-acceleration esti-mation.Secondly,the normalized innovation is used for state jumping detection to set detection threshold concisely and make the filter detect various state jumping with low latency.Thirdly,when sate jumping is detected,the covariance matrix inflation will be done,and then an extra time update process will be con-ducted at this time instance before measurement update.In this way,the relatively large estimation error at the detection moment can significantly decrease.Finally,typical simulations are per-formed to illustrated the effectiveness of the method.展开更多
This paper presents a new approach for automatical classification of structural state through deep learning.In this work,a Convolutional Neural Network(CNN)was designed to fuse both the feature extraction and classifi...This paper presents a new approach for automatical classification of structural state through deep learning.In this work,a Convolutional Neural Network(CNN)was designed to fuse both the feature extraction and classification blocks into an intelligent and compact learning system and detect the structural state of a steel frame;the input was a series of vibration signals,and the output was a structural state.The digital image correlation(DIC)technology was utilized to collect vibration information of an actual steel frame,and subsequently,the raw signals,without further pre-processing,were directly utilized as the CNN samples.The results show that CNN can achieve 99%classification accuracy for the research model.Besides,compared with the backpropagation neural network(BPNN),the CNN had an accuracy similar to that of the BPNN,but it only consumes 19%of the training time.The outputs of the convolution and pooling layers were visually displayed and discussed as well.It is demonstrated that:1)the CNN can extract the structural state information from the vibration signals and classify them;2)the detection and computational performance of the CNN for the incomplete data are better than that of the BPNN;3)the CNN has better anti-noise ability.展开更多
Isolated-core-excitation (ICE) scheme and autoionization detection are employed to study the bound Rydberg states of europium atom. The high-lying states with odd parity have been measured using the autoionization d...Isolated-core-excitation (ICE) scheme and autoionization detection are employed to study the bound Rydberg states of europium atom. The high-lying states with odd parity have been measured using the autoionization detection method with three different excitation paths via 4f76s6p[8Ph/2], 4f76s6p[8P7/2] and 4f76s6p[SP9/2] intermediate states, respectively. In this paper the spectra of bound Rydberg states of Eu atom are reported, which cover the energy regions from 36000 cm-1 to 38250 cm-1 and from 38900 cm-1 to 39500 cm-1. The study provides the information about level energy, the possible J values and relative line intensity as well as the effective principal quantum number n* for these states. This work not only confirms the previous results of many states, but also discovers 11 new Rydberg states of Eu atom.展开更多
The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS...The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS with short time-delay. Based on the designed states observer, a robust fault detection approach is proposed for NCS. In addition, an optimization method for the selection of the detection threshold is introduced for better tradeoff between the robustness and the sensitivity. Finally, some simulation results demonstrate that the presented states observer is robust and the fault detection for NCS is effective.展开更多
Interference metrology is a method for achieving high precision detection by phase estimation. The phase sensitivity of a traditional interferometer is subject to the standard quantum limit, while its resolution is co...Interference metrology is a method for achieving high precision detection by phase estimation. The phase sensitivity of a traditional interferometer is subject to the standard quantum limit, while its resolution is constrained by the Rayleigh diffraction limit. The resolution and sensitivity of phase measurement can be enhanced by using quantum metrology. We propose a quantum interference metrology scheme using the entangled squeezed vacuum state, which is obtained using the magic beam splitter, expressed as |ψ〉=(|ξ〉|0〉+|0〉|ξ〉)/√2+2/coshr, such as the N00 N state. We derive the phase sensitivity and the resolution of the system with Z detection, project detection, and parity detection. By simulation and analysis, we determine that parity detection is an optimal detection method, which can break through the Rayleigh diffraction limit and the standard quantum limit.展开更多
We investigate the production of ultracold ground state x^1∑7+(u = 0) RbCs molecules in the lowest vibrational level via short-range photoassociation followed by spontaneous emission. The starting point is the las...We investigate the production of ultracold ground state x^1∑7+(u = 0) RbCs molecules in the lowest vibrational level via short-range photoassociation followed by spontaneous emission. The starting point is the laser cooled 85Rb and laa cs atoms in a dual species, forced dark magneto-optical trap. The special intermediate level (5)O+ (u = 10) correlated to the (2)311 electric state is achieved by the photoassociation process. The formed ground state X1∑+ (u = 0) molecule is resonantly excited to the 2111 intermediate state by a 651 nm pulse laser and is ionized by a 532nm pulse laser and then detected by the time-of-flight mass spectrum. Saturation of the photoionization spectroscopy at large ionization laser energy is observed and the ionization efficiency is obtained from the fitting. The production of ultracold ground state 85Rblaacs molecules is facilitative for the further research about the manipulation of ultracold molecules in the rovibrational ground state.展开更多
We construct a circuit based on PBS and CNOT gates, which can be used to determine whether the input pulse is empty or not according to the detection result of the auxiliary state, while the input state will not be ch...We construct a circuit based on PBS and CNOT gates, which can be used to determine whether the input pulse is empty or not according to the detection result of the auxiliary state, while the input state will not be changed. The circuit can be treated as a pre-detection device. Equipping the pre-detection device in the front of the receiver of the quantum key distribution (QKD) can reduce the influence of the dark count of the detector, hence increasing the secure communication distance significantly. Simulation results show that the secure communication distance can reach 516 km and 479 km for QKD with perfect single photon source and decoy-state QKD with weak coherent photon source, respectively.展开更多
A parametric approach to robust fault detection in linear systems with unknown disturbances is presented. The residual is generated using full-order state observers (FSO). Based on an analytical solution to a type o...A parametric approach to robust fault detection in linear systems with unknown disturbances is presented. The residual is generated using full-order state observers (FSO). Based on an analytical solution to a type of Sylvester matrix equations, the parameterization of the observer gain matrix is given. In terms of the design degrees of freedom provided by the parametric observer design and a group of introduced parameter vectors, a sufficient and necessary condition for fullorder state observer design with disturbance decoupling is then established. By properly constraining the design parameters according to this proposed condition, the effect of the disturbance on the residual signal is also decoupled, and a simple algorithm is developed. The presented approach offers all the degrees of design freedom. Finally, a numerical example illustrates the effect of the proposed approach.展开更多
The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase...The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase trajectory in a small- scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system.展开更多
Time series segmentation has attracted more interests in recent years,which aims to segment time series into different segments,each reflects a state of the monitored objects.Although there have been many surveys on t...Time series segmentation has attracted more interests in recent years,which aims to segment time series into different segments,each reflects a state of the monitored objects.Although there have been many surveys on time series segmentation,most of them focus more on change point detection(CPD)methods and overlook the advances in boundary detection(BD)and state detection(SD)methods.In this paper,we categorize time series segmentation methods into CPD,BD,and SD methods,with a specific focus on recent advances in BD and SD methods.Within the scope of BD and SD,we subdivide the methods based on their underlying models/techniques and focus on the milestones that have shaped the development trajectory of each category.As a conclusion,we found that:(1)Existing methods failed to provide sufficient support for online working,with only a few methods supporting online deployment;(2)Most existing methods require the specification of parameters,which hinders their ability to work adaptively;(3)Existing SD methods do not attach importance to accurate detection of boundary points in evaluation,which may lead to limitations in boundary point detection.We highlight the ability to working online and adaptively as important attributes of segmentation methods,the boundary detection accuracy as a neglected metrics for SD methods.展开更多
The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the reg...The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the regular traffic operation, these ubiquitous sensing technologies have the potential for unprecedented data collection at any temporal and spatial position. While as a typical distributed parameter system, the freeway traffic dynamics are determined by the current system states and the boundary traffic demand-supply. Using the three-step extended Kalman filtering, this paper simultaneously estimates the real-time traffic state and the boundary flux of freeway traffic with the distributed speed detector networks organized at any location of interest. In order to assess the effectiveness of the proposed approach, a freeway segment from Interstate 80 East (I-80E) in Alameda, Emeryville, and Northern California is selected. Experimental results show that the proposed method has the potential of using only speed detecting data to monitor the state of urban freeway transportation systems without access to the traditional measurement data, such as the boundary flows.展开更多
基金supported by“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-002)the Technology Development Program(RS-2023-00278623)funded by the Ministry of SMEs and Startups(MSS,Korea).
文摘This paper addresses the challenge of identifying abnormal states in Lithium-ion Battery(LiB)time series data.As the energy sector increasingly focuses on integrating distributed energy resources,Virtual Power Plants(VPP)have become a vital new framework for energy management.LiBs are key in this context,owing to their high-efficiency energy storage capabilities essential for VPP operations.However,LiBs are prone to various abnormal states like overcharging,over-discharging,and internal short circuits,which impede power transmission efficiency.Traditional methods for detecting such abnormalities in LiB are too broad and lack precision for the dynamic and irregular nature of LiB data.In response,we introduce an innovative method:a Long Short-Term Memory(LSTM)autoencoder based on Dynamic Frequency Memory and Correlation Attention(DFMCA-LSTM-AE).This unsupervised,end-to-end approach is specifically designed for dynamically monitoring abnormal states in LiB data.The method starts with a Dynamic Frequency Fourier Transform module,which dynamically captures the frequency characteristics of time series data across three scales,incorporating a memory mechanism to reduce overgeneralization of abnormal frequencies.This is followed by integrating LSTM into both the encoder and decoder,enabling the model to effectively encode and decode the temporal relationships in the time series.Empirical tests on a real-world LiB dataset demonstrate that DFMCA-LSTM-AE outperforms existing models,achieving an average Area Under the Curve(AUC)of 90.73%and an F1 score of 83.83%.These results mark significant improvements over existing models,ranging from 2.4%–45.3%for AUC and 1.6%–28.9%for F1 score,showcasing the model’s enhanced accuracy and reliability in detecting abnormal states in LiB data.
基金supported by NSFC with grant No.62076083Firstly,the authors would like to express thanks to the Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province with grant No.2020E10010Industrial Neuroscience Laboratory of Sapienza University of Rome.
文摘Cognitive state detection using electroencephalogram(EEG)signals for various tasks has attracted significant research attention.However,it is difficult to further improve the performance of crosssubject cognitive state detection.Further,most of the existing deep learning models will degrade significantly when limited training samples are given,and the feature hierarchical relationships are ignored.To address the above challenges,we propose an efficient interpretation model based on multiple capsule networks for cross-subject EEG cognitive state detection,termed as Efficient EEG-based Multi-Capsule Framework(E3GCAPS).Specifically,we use a selfexpression module to capture the potential connections between samples,which is beneficial to alleviate the sensitivity of outliers that are caused by the individual differences of cross-subject EEG.In addition,considering the strong correlation between cognitive states and brain function connection mode,the dynamic subcapsule-based spatial attention mechanism is introduced to explore the spatial relationship of multi-channel 1D EEG data,in which multichannel 1D data greatly improving the training efficiency while preserving the model performance.The effectiveness of the E3GCAPS is validated on the Fatigue-Awake EEG Dataset(FAAD)and the SJTU Emotion EEG Dataset(SEED).Experimental results show E3GCAPS can achieve remarkable results on the EEG-based cross-subject cognitive state detection under different tasks.
基金This work was supported by National Natural Science Foundation of China(12372045)Shanghai Aerospace Science and Technology Program(SAST2021-030).
文摘To investigate the real-time mean orbital elements(MOEs)estimation problem under the influence of state jumping caused by non-fatal spacecraft collision or protective orbit trans-fer,a modified augmented square-root unscented Kalman filter(MASUKF)is proposed.The MASUKF is composed of sigma points calculation,time update,modified state jumping detec-tion,and measurement update.Compared with the filters used in the existing literature on MOEs estimation,it has three main characteristics.Firstly,the state vector is augmented from six to nine by the added thrust acceleration terms,which makes the fil-ter additionally give the state-jumping-thrust-acceleration esti-mation.Secondly,the normalized innovation is used for state jumping detection to set detection threshold concisely and make the filter detect various state jumping with low latency.Thirdly,when sate jumping is detected,the covariance matrix inflation will be done,and then an extra time update process will be con-ducted at this time instance before measurement update.In this way,the relatively large estimation error at the detection moment can significantly decrease.Finally,typical simulations are per-formed to illustrated the effectiveness of the method.
文摘This paper presents a new approach for automatical classification of structural state through deep learning.In this work,a Convolutional Neural Network(CNN)was designed to fuse both the feature extraction and classification blocks into an intelligent and compact learning system and detect the structural state of a steel frame;the input was a series of vibration signals,and the output was a structural state.The digital image correlation(DIC)technology was utilized to collect vibration information of an actual steel frame,and subsequently,the raw signals,without further pre-processing,were directly utilized as the CNN samples.The results show that CNN can achieve 99%classification accuracy for the research model.Besides,compared with the backpropagation neural network(BPNN),the CNN had an accuracy similar to that of the BPNN,but it only consumes 19%of the training time.The outputs of the convolution and pooling layers were visually displayed and discussed as well.It is demonstrated that:1)the CNN can extract the structural state information from the vibration signals and classify them;2)the detection and computational performance of the CNN for the incomplete data are better than that of the BPNN;3)the CNN has better anti-noise ability.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10574098, 10674102)the Natural Science Foundation of Tianjin (Grant No 05YFJMJC05200)
文摘Isolated-core-excitation (ICE) scheme and autoionization detection are employed to study the bound Rydberg states of europium atom. The high-lying states with odd parity have been measured using the autoionization detection method with three different excitation paths via 4f76s6p[8Ph/2], 4f76s6p[8P7/2] and 4f76s6p[SP9/2] intermediate states, respectively. In this paper the spectra of bound Rydberg states of Eu atom are reported, which cover the energy regions from 36000 cm-1 to 38250 cm-1 and from 38900 cm-1 to 39500 cm-1. The study provides the information about level energy, the possible J values and relative line intensity as well as the effective principal quantum number n* for these states. This work not only confirms the previous results of many states, but also discovers 11 new Rydberg states of Eu atom.
基金supported partly by the Natural Science Foundation China (70571032).
文摘The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS with short time-delay. Based on the designed states observer, a robust fault detection approach is proposed for NCS. In addition, an optimization method for the selection of the detection threshold is introduced for better tradeoff between the robustness and the sensitivity. Finally, some simulation results demonstrate that the presented states observer is robust and the fault detection for NCS is effective.
文摘Interference metrology is a method for achieving high precision detection by phase estimation. The phase sensitivity of a traditional interferometer is subject to the standard quantum limit, while its resolution is constrained by the Rayleigh diffraction limit. The resolution and sensitivity of phase measurement can be enhanced by using quantum metrology. We propose a quantum interference metrology scheme using the entangled squeezed vacuum state, which is obtained using the magic beam splitter, expressed as |ψ〉=(|ξ〉|0〉+|0〉|ξ〉)/√2+2/coshr, such as the N00 N state. We derive the phase sensitivity and the resolution of the system with Z detection, project detection, and parity detection. By simulation and analysis, we determine that parity detection is an optimal detection method, which can break through the Rayleigh diffraction limit and the standard quantum limit.
基金Supported by the National Basic Research Program of China under Grant No 2012CB921603the National Natural Science Foundation of China under Grant Nos 61275209,11304189,61378015 and 11434007+1 种基金the National Natural Science Foundation for Excellent Research Team under Grant No 61121064the Program for Changjiang Scholars and Innovative Research Team in University under Grant No IRT13076
文摘We investigate the production of ultracold ground state x^1∑7+(u = 0) RbCs molecules in the lowest vibrational level via short-range photoassociation followed by spontaneous emission. The starting point is the laser cooled 85Rb and laa cs atoms in a dual species, forced dark magneto-optical trap. The special intermediate level (5)O+ (u = 10) correlated to the (2)311 electric state is achieved by the photoassociation process. The formed ground state X1∑+ (u = 0) molecule is resonantly excited to the 2111 intermediate state by a 651 nm pulse laser and is ionized by a 532nm pulse laser and then detected by the time-of-flight mass spectrum. Saturation of the photoionization spectroscopy at large ionization laser energy is observed and the ionization efficiency is obtained from the fitting. The production of ultracold ground state 85Rblaacs molecules is facilitative for the further research about the manipulation of ultracold molecules in the rovibrational ground state.
基金supported by the National Natural Science Foundation of China(Grant No.61372076)the Programme of Introducing Talents of Discipline to Universities,China(Grant No.B08038)the Fundamental Research Funds for the Central Universities,China(Grant No.K5051201021)
文摘We construct a circuit based on PBS and CNOT gates, which can be used to determine whether the input pulse is empty or not according to the detection result of the auxiliary state, while the input state will not be changed. The circuit can be treated as a pre-detection device. Equipping the pre-detection device in the front of the receiver of the quantum key distribution (QKD) can reduce the influence of the dark count of the detector, hence increasing the secure communication distance significantly. Simulation results show that the secure communication distance can reach 516 km and 479 km for QKD with perfect single photon source and decoy-state QKD with weak coherent photon source, respectively.
基金This work was supported by the National Natural Science Foundation of China (No. 60374024)the Program for Changjiang Scholars andInnovative Research Team in University.
文摘A parametric approach to robust fault detection in linear systems with unknown disturbances is presented. The residual is generated using full-order state observers (FSO). Based on an analytical solution to a type of Sylvester matrix equations, the parameterization of the observer gain matrix is given. In terms of the design degrees of freedom provided by the parametric observer design and a group of introduced parameter vectors, a sufficient and necessary condition for fullorder state observer design with disturbance decoupling is then established. By properly constraining the design parameters according to this proposed condition, the effect of the disturbance on the residual signal is also decoupled, and a simple algorithm is developed. The presented approach offers all the degrees of design freedom. Finally, a numerical example illustrates the effect of the proposed approach.
基金Project supported by the National Natural Science Foundation of China(Grant No.61673066)
文摘The conventional Duffing oscillator weak signal detection method, which is based on a strong reference signal, has inherent deficiencies. To address these issues, the characteristics of the Duffing oscillator's phase trajectory in a small- scale periodic state are analyzed by introducing the theory of stopping oscillation system. Based on this approach, a novel Duffing oscillator weak wide-band signal detection method is proposed. In this novel method, the reference signal is discarded, and the to-be-detected signal is directly used as a driving force. By calculating the cosine function of a phase space angle, a single Duffing oscillator can be used for weak wide-band signal detection instead of an array of uncoupled Duffing oscillators. Simulation results indicate that, compared with the conventional Duffing oscillator detection method, this approach performs better in frequency detection intervals, and reduces the signal-to-noise ratio detection threshold, while improving the real-time performance of the system.
基金This work is supported by the National Key Research and Development Program of China(2022YFF1203001)National Natural Science Foundation of China(Nos.62072465,62102425)the Science and Technology Innovation Program of Hunan Province(Nos.2022RC3061,2023RC3027).
文摘Time series segmentation has attracted more interests in recent years,which aims to segment time series into different segments,each reflects a state of the monitored objects.Although there have been many surveys on time series segmentation,most of them focus more on change point detection(CPD)methods and overlook the advances in boundary detection(BD)and state detection(SD)methods.In this paper,we categorize time series segmentation methods into CPD,BD,and SD methods,with a specific focus on recent advances in BD and SD methods.Within the scope of BD and SD,we subdivide the methods based on their underlying models/techniques and focus on the milestones that have shaped the development trajectory of each category.As a conclusion,we found that:(1)Existing methods failed to provide sufficient support for online working,with only a few methods supporting online deployment;(2)Most existing methods require the specification of parameters,which hinders their ability to work adaptively;(3)Existing SD methods do not attach importance to accurate detection of boundary points in evaluation,which may lead to limitations in boundary point detection.We highlight the ability to working online and adaptively as important attributes of segmentation methods,the boundary detection accuracy as a neglected metrics for SD methods.
文摘The rapid development of 5G mobile communication and portable traffic detection technologies enhances highway transportation systems in detail and at a vehicle level. Besides the advantage of no disturbance to the regular traffic operation, these ubiquitous sensing technologies have the potential for unprecedented data collection at any temporal and spatial position. While as a typical distributed parameter system, the freeway traffic dynamics are determined by the current system states and the boundary traffic demand-supply. Using the three-step extended Kalman filtering, this paper simultaneously estimates the real-time traffic state and the boundary flux of freeway traffic with the distributed speed detector networks organized at any location of interest. In order to assess the effectiveness of the proposed approach, a freeway segment from Interstate 80 East (I-80E) in Alameda, Emeryville, and Northern California is selected. Experimental results show that the proposed method has the potential of using only speed detecting data to monitor the state of urban freeway transportation systems without access to the traditional measurement data, such as the boundary flows.