In the analysis of power electronics system,it is necessary to simulate ordinary differential equations(ODEs)with discontinuities and stiffness.However,there are many difficulties in using traditional discrete-time al...In the analysis of power electronics system,it is necessary to simulate ordinary differential equations(ODEs)with discontinuities and stiffness.However,there are many difficulties in using traditional discrete-time algorithms to solve such equations.Kofman and others presented the quantized state systems(QSS)algorithm in the discrete event system specification(DEVS)formalism.The discretization is applied to the state variables instead of time range in QSS.QSS is efficient to solve ODEs,but it is difficulty to be used when simulating actual power electronics systems with controller’s and other events.Based on the idea of this numerical algorithm and discrete event,a Discrete State Event Driven(DSED)simulation method is presented in this paper,which is fit for simulation of power electronics system.The method is developed to deal with non-linearity,stiffness and multi-time scale of power electronics systems.The DSED simulation method includes event definition,module seperation and modeling,event-driven mechanisms,numerical computation based on QSS,and some other operations.Simulation results verified the effectiveness and validity of the proposed method.展开更多
A state/event fault tree(SEFT)is a modeling technique for describing the causal chains of events leading to failure in software-controlled complex systems.Such systems are ubiquitous in all areas of everyday life,and ...A state/event fault tree(SEFT)is a modeling technique for describing the causal chains of events leading to failure in software-controlled complex systems.Such systems are ubiquitous in all areas of everyday life,and safety and reliability analyses are increasingly required for these systems.SEFTs combine elements from the traditional fault tree with elements from state-based techniques.In the context of the real-time safety-critical systems,SEFTs do not describe the time properties and important timedependent system behaviors that can lead to system failures.Further,SEFTs lack the precise semantics required for formally modeling time behaviors.In this paper,we present a qualitative analysis method for SEFTs based on transformation from SEFT to timed automata(TA),and use the model checker UPPAAL to verify system requirements’properties.The combination of SEFT and TA is an important step towards an integrated design and verification process for real-time safety-critical systems.Finally,we present a case study of a powerboat autopilot system to confirm our method is viable and valid after achieving the verification goal step by step.展开更多
基金This work was supported by a grant from the National Nature Science Foundation of China(No 51490680,No 51490683)。
文摘In the analysis of power electronics system,it is necessary to simulate ordinary differential equations(ODEs)with discontinuities and stiffness.However,there are many difficulties in using traditional discrete-time algorithms to solve such equations.Kofman and others presented the quantized state systems(QSS)algorithm in the discrete event system specification(DEVS)formalism.The discretization is applied to the state variables instead of time range in QSS.QSS is efficient to solve ODEs,but it is difficulty to be used when simulating actual power electronics systems with controller’s and other events.Based on the idea of this numerical algorithm and discrete event,a Discrete State Event Driven(DSED)simulation method is presented in this paper,which is fit for simulation of power electronics system.The method is developed to deal with non-linearity,stiffness and multi-time scale of power electronics systems.The DSED simulation method includes event definition,module seperation and modeling,event-driven mechanisms,numerical computation based on QSS,and some other operations.Simulation results verified the effectiveness and validity of the proposed method.
基金supported by the National Natural Science Foundation of China(11832012)
文摘A state/event fault tree(SEFT)is a modeling technique for describing the causal chains of events leading to failure in software-controlled complex systems.Such systems are ubiquitous in all areas of everyday life,and safety and reliability analyses are increasingly required for these systems.SEFTs combine elements from the traditional fault tree with elements from state-based techniques.In the context of the real-time safety-critical systems,SEFTs do not describe the time properties and important timedependent system behaviors that can lead to system failures.Further,SEFTs lack the precise semantics required for formally modeling time behaviors.In this paper,we present a qualitative analysis method for SEFTs based on transformation from SEFT to timed automata(TA),and use the model checker UPPAAL to verify system requirements’properties.The combination of SEFT and TA is an important step towards an integrated design and verification process for real-time safety-critical systems.Finally,we present a case study of a powerboat autopilot system to confirm our method is viable and valid after achieving the verification goal step by step.