The classification of sitting issues is investigated since detailed state classification for humanoid robots plays a key role in the practical application of humanoid robots, particularly for the humanoid robots doing...The classification of sitting issues is investigated since detailed state classification for humanoid robots plays a key role in the practical application of humanoid robots, particularly for the humanoid robots doing complicated tasks. This paper presents the concept, the characteristics tree, and the prototype of the humanoid robot SJTU-HR1. The basic states lbr humanoid robots are proposed, including lying, sitting, standing, and handstanding. Moreover, the sitting states are classified into several states from the viewpoint of topology. The Gy (generalized function) set theory is applied to achieve the kinematic characteristics of the interested end-effectors of the humanoid robot SJTU-HR1. Finally, the results indicate that a large number of the sitting states can be represented by the meaningful notations systematically. Furthermore, the one-to-one correspondence between the state and kinematic characteristics of the interested end-effectors of the SJTU-HR 1 leads to deeper insight into the capabilities of the humanoid robot SJTU-HR1.展开更多
基金Acknowledgement This work was supported by the National Basic Research Program of China (2006CB705402), the Na- tional Natural Science Foundation of China (30770538, 50821003), and the Joint Research Fund for Overseas Natural Science of China.
文摘The classification of sitting issues is investigated since detailed state classification for humanoid robots plays a key role in the practical application of humanoid robots, particularly for the humanoid robots doing complicated tasks. This paper presents the concept, the characteristics tree, and the prototype of the humanoid robot SJTU-HR1. The basic states lbr humanoid robots are proposed, including lying, sitting, standing, and handstanding. Moreover, the sitting states are classified into several states from the viewpoint of topology. The Gy (generalized function) set theory is applied to achieve the kinematic characteristics of the interested end-effectors of the humanoid robot SJTU-HR1. Finally, the results indicate that a large number of the sitting states can be represented by the meaningful notations systematically. Furthermore, the one-to-one correspondence between the state and kinematic characteristics of the interested end-effectors of the SJTU-HR 1 leads to deeper insight into the capabilities of the humanoid robot SJTU-HR1.