We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photo...We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover,single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity.Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field.This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system.展开更多
Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical c...Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical challenge in the field of oxygen reduction reaction(ORR)catalysis.Here,we offer a simple approach for modulating the electronic states of metal nanocrystals by bimetal co-doping into carbon-nitrogen substrate,allowing us to modulate the electronic structure of catalytic active centers.To test our strategy,we designed a typical bimetallic nanoparticle catalyst(Fe-Co NP/NC)to flexibly alter the reaction kinetics of ORR.Our results from synchrotron Xray absorption spectroscopy and X-ray photoelectron spectroscopy showed that the co-doping of iron and cobalt could optimize the intrinsic charge distribution of Fe-Co NP/NC catalyst,promoting the oxygen reduction kinetics and ultimately achieving remarkable ORR activity.Consequently,the carefully designed Fe-Co NP/NC exhibits an ultra-high kinetic current density at the operating voltage(71.94 mA/cm^(2)at 0.80 V),and the half-wave potential achieves 0.915 V,which is obviously better than that of the corresponding controls including Fe NP/NC,Co NP/NC.Our findings provide a unique perspective for optimizing the electronic structure of active centers to achieve higher ORR catalytic activity and faster kinetics.展开更多
A new combined soft switching technique and a novel topology of aeronautical static inverter with high frequency pulse dc link are proposed in this paper, namely an electrical isolated converter can realize soft swi...A new combined soft switching technique and a novel topology of aeronautical static inverter with high frequency pulse dc link are proposed in this paper, namely an electrical isolated converter can realize soft switching of two stage cascade converters. It lays technical foundation for high power density, high efficiency and low cost aeronautical static inverter. The operation and design approach of this topology are carefully analyzed and studied. The validity of this topology is verified by simulation and test.展开更多
In order to diagnose the working status of each module on sensor node and make sure the wireless sensor networks (WSN) work properly, the components of sensor node and their working characteristics are studied. An o...In order to diagnose the working status of each module on sensor node and make sure the wireless sensor networks (WSN) work properly, the components of sensor node and their working characteristics are studied. An on-line fault self-diagnosis method for sensor node is proposed. First, a flexible fault sensing circuit is designed as a state detection module on sensor node. Second, a self- diagnosis algorithm is proposed based on the hardware design and the failure analysis on sensor node. Finally, in order to ensure the WSN reliability, the voltage changes of each module working statuses can be observed using the state detection module and the faulty module will be found out timely. The experimental results show that this self-diagnosis method is suitable to sensor nodes in WSN.展开更多
Design of electrochemical active boron(B)site at solid materials to understand the relationships between the localized structure,charge state at the B site and electrocatalytic activity plays a crucial role in boostin...Design of electrochemical active boron(B)site at solid materials to understand the relationships between the localized structure,charge state at the B site and electrocatalytic activity plays a crucial role in boosting the green electrochemical synthesis of hydrogen peroxide(H_(2)O_(2))via two-electron oxygen reduction(2eORR)pathway.Herein,we demonstrate a carbon(C)and nitrogen(N)localized bonding microenvironment to modulate the charge state of B site at the boron-carbon nitride solid(BCNs)to realize the efficient selective electrocatalytic H_(2)O_(2)production.The localized chemical structure of N-B-N,N-B-C and C-B-C bonds at B site can be regulated through solid-state reaction between boron nitride(BN)and porous carbon(C)at variable temperatures.The optimized BCN-1100 achieves an outstanding H_(2)O_(2)selectivity of 89%and electron transfer number of 2.2(at 0.55 V vs.RHE),with the production of 10.55mmol/L during 2.5 h and the catalytic stability duration for 15000 cycles.Further first-principles calculations identified the dependency of localized bonding microenvironment on the OOH~*adsorption energies and relevant charge states at the boron site.The localized structure of B site with BNC_(2)-Gr configuration is predicted to be the highest 2eORR activity.展开更多
Squeezed state of light explores a new era in noiseless communication and data processing recently breaking the quantum limit of noise. We propose a new mechanism of modulating an amplitude-squeezed signal with the in...Squeezed state of light explores a new era in noiseless communication and data processing recently breaking the quantum limit of noise. We propose a new mechanism of modulating an amplitude-squeezed signal with the instantaneous intensity variation of a coherent signal. The modulating signal is a coherent light where the amplitude-squeezed light takes the role of a carrier signal.展开更多
The cell circuit design and test of inductive adder pulse generator for kicker magnet are presented in the paper.The 3.3kV IGBT,a large dimension nanocrystalline core and a 2.5kV 50uF energy storage capacitor are used...The cell circuit design and test of inductive adder pulse generator for kicker magnet are presented in the paper.The 3.3kV IGBT,a large dimension nanocrystalline core and a 2.5kV 50uF energy storage capacitor are used. The multi-channel trigger IGBT driver board is designed.IGBT failures under short circuit condition and protection scheme are explored.The multi-cell prototype is designed.The waveforms of experiments are presented.It turns out that the rise and fall time of the output pulse is fast and the pulse width is adjustable.The maximum current of pulse reaches 2kA.It satisfies the higher requirement of beam injection technology.展开更多
A generalization of the Kuramoto model in which oscillators are coupled to the mean field with random signs is investigated in this work. We focus on a situation in which the natural frequencies of oscillators follow ...A generalization of the Kuramoto model in which oscillators are coupled to the mean field with random signs is investigated in this work. We focus on a situation in which the natural frequencies of oscillators follow a uniform probability density. By numerically simulating the model, we find that the model supports a modulated travelling wave state except for already reported 7r state and travelling wave state in the one with natural frequencies following Lorenztian probability density or a delta function. The dependence of the observed dynamics on the parameters of the model is explored and we find that the onset of synchronization in the model displays a non-monotonic dependence on both positive and negative coupling strength.展开更多
The efficient implementation of computational tasks is critical to quantum computations. In quantum circuits, multicontrol unitary operations are important components. Here, we present an extremely efficient and direc...The efficient implementation of computational tasks is critical to quantum computations. In quantum circuits, multicontrol unitary operations are important components. Here, we present an extremely efficient and direct approach to multiple multicontrol unitary operations without decomposition to CNOT and single-photon gates. With the proposed approach, the necessary twophoton operations could be reduced from O(n^3) with the traditional decomposition approach to O(n), which will greatly relax the requirements and make large-scale quantum computation feasible. Moreover, we propose the potential application to the(n-k)-uniform hypergraph state.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 51132004,11474096,11604199,U1704145 and 11747101the Science and Technology Commission of Shanghai Municipality under Grant No 14JC1401500+1 种基金the Henan Provincial Natural Science Foundation of China under Grant No 182102210117the Higher Education Key Program of He’nan Province of China under Grant Nos 17A140025 and 16A140030
文摘We extend the third perturbation theory to study the polarization control behavior of the intermediate state absorption in Nd^(3+)ions. The results show that coherent interference can occur between the single-photon and three-photon excitation pathways, and depends on the central frequency of the femtosecond laser field. Moreover,single-photon and three-photon absorptions have different polarization control efficiencies, and the relative weight of three-photon absorption in the whole excitation processes can increase with increasing the laser intensity.Therefore, the enhancement or suppression of the intermediate state absorption can be realized and manipulated by properly designing the intensity and central frequency of the polarization modulated femtosecond laser field.This research can not only enrich theoretical research methods for the up-conversion luminescence manipulation of rare-earth ions, but also can provide a clear physical picture for understanding and controlling multi-photon absorption in a multiple energy level system.
基金supported by the Natural Science Foundation of Anhui Province(No.2208085J01 and No.2208085QA28).
文摘Controlling the local electronic structure of active ingredients to improve the adsorption desorption characteristics of oxygen-containing intermediates over the electrochemical liquid-solid interfaces is a critical challenge in the field of oxygen reduction reaction(ORR)catalysis.Here,we offer a simple approach for modulating the electronic states of metal nanocrystals by bimetal co-doping into carbon-nitrogen substrate,allowing us to modulate the electronic structure of catalytic active centers.To test our strategy,we designed a typical bimetallic nanoparticle catalyst(Fe-Co NP/NC)to flexibly alter the reaction kinetics of ORR.Our results from synchrotron Xray absorption spectroscopy and X-ray photoelectron spectroscopy showed that the co-doping of iron and cobalt could optimize the intrinsic charge distribution of Fe-Co NP/NC catalyst,promoting the oxygen reduction kinetics and ultimately achieving remarkable ORR activity.Consequently,the carefully designed Fe-Co NP/NC exhibits an ultra-high kinetic current density at the operating voltage(71.94 mA/cm^(2)at 0.80 V),and the half-wave potential achieves 0.915 V,which is obviously better than that of the corresponding controls including Fe NP/NC,Co NP/NC.Our findings provide a unique perspective for optimizing the electronic structure of active centers to achieve higher ORR catalytic activity and faster kinetics.
文摘A new combined soft switching technique and a novel topology of aeronautical static inverter with high frequency pulse dc link are proposed in this paper, namely an electrical isolated converter can realize soft switching of two stage cascade converters. It lays technical foundation for high power density, high efficiency and low cost aeronautical static inverter. The operation and design approach of this topology are carefully analyzed and studied. The validity of this topology is verified by simulation and test.
基金Supported by the Basic Research Foundation of Beijing Institute of Technology(200705422009)
文摘In order to diagnose the working status of each module on sensor node and make sure the wireless sensor networks (WSN) work properly, the components of sensor node and their working characteristics are studied. An on-line fault self-diagnosis method for sensor node is proposed. First, a flexible fault sensing circuit is designed as a state detection module on sensor node. Second, a self- diagnosis algorithm is proposed based on the hardware design and the failure analysis on sensor node. Finally, in order to ensure the WSN reliability, the voltage changes of each module working statuses can be observed using the state detection module and the faulty module will be found out timely. The experimental results show that this self-diagnosis method is suitable to sensor nodes in WSN.
基金financially supported by the National Natural Science Foundation of China(Nos.22161036,11904187,21961024 and 21961025)Natural Science Foundation of Inner Mongolia(Nos.2018JQ05 and 2019BS02007)+2 种基金Incentive Funding from Nano Innovation Institute(NII)of Inner Mongolia Minzu Universitythe Inner Mongolia Autonomous Region Funding Project for Science&Technology Achievement Transformation(Nos.CGZH2018156 and 2019GG261)Doctoral Scientific Research Foundation of Inner Mongolia Minzu University(Nos.BS437 and BS480)。
文摘Design of electrochemical active boron(B)site at solid materials to understand the relationships between the localized structure,charge state at the B site and electrocatalytic activity plays a crucial role in boosting the green electrochemical synthesis of hydrogen peroxide(H_(2)O_(2))via two-electron oxygen reduction(2eORR)pathway.Herein,we demonstrate a carbon(C)and nitrogen(N)localized bonding microenvironment to modulate the charge state of B site at the boron-carbon nitride solid(BCNs)to realize the efficient selective electrocatalytic H_(2)O_(2)production.The localized chemical structure of N-B-N,N-B-C and C-B-C bonds at B site can be regulated through solid-state reaction between boron nitride(BN)and porous carbon(C)at variable temperatures.The optimized BCN-1100 achieves an outstanding H_(2)O_(2)selectivity of 89%and electron transfer number of 2.2(at 0.55 V vs.RHE),with the production of 10.55mmol/L during 2.5 h and the catalytic stability duration for 15000 cycles.Further first-principles calculations identified the dependency of localized bonding microenvironment on the OOH~*adsorption energies and relevant charge states at the boron site.The localized structure of B site with BNC_(2)-Gr configuration is predicted to be the highest 2eORR activity.
文摘Squeezed state of light explores a new era in noiseless communication and data processing recently breaking the quantum limit of noise. We propose a new mechanism of modulating an amplitude-squeezed signal with the instantaneous intensity variation of a coherent signal. The modulating signal is a coherent light where the amplitude-squeezed light takes the role of a carrier signal.
文摘The cell circuit design and test of inductive adder pulse generator for kicker magnet are presented in the paper.The 3.3kV IGBT,a large dimension nanocrystalline core and a 2.5kV 50uF energy storage capacitor are used. The multi-channel trigger IGBT driver board is designed.IGBT failures under short circuit condition and protection scheme are explored.The multi-cell prototype is designed.The waveforms of experiments are presented.It turns out that the rise and fall time of the output pulse is fast and the pulse width is adjustable.The maximum current of pulse reaches 2kA.It satisfies the higher requirement of beam injection technology.
基金Supported by National Natural Science Foundation of China under Grant No. 11247279
文摘A generalization of the Kuramoto model in which oscillators are coupled to the mean field with random signs is investigated in this work. We focus on a situation in which the natural frequencies of oscillators follow a uniform probability density. By numerically simulating the model, we find that the model supports a modulated travelling wave state except for already reported 7r state and travelling wave state in the one with natural frequencies following Lorenztian probability density or a delta function. The dependence of the observed dynamics on the parameters of the model is explored and we find that the onset of synchronization in the model displays a non-monotonic dependence on both positive and negative coupling strength.
基金supported by the National Natural Science Foundation of China(Grant No.11574093)the Natural Science Foundation of the Fujian Province of China(Grant No.2017J01004)the Promotion Program for Young and Middle-aged Teachers in Science and Technology Research of Huaqiao University(Grant No.ZQN-PY113)
文摘The efficient implementation of computational tasks is critical to quantum computations. In quantum circuits, multicontrol unitary operations are important components. Here, we present an extremely efficient and direct approach to multiple multicontrol unitary operations without decomposition to CNOT and single-photon gates. With the proposed approach, the necessary twophoton operations could be reduced from O(n^3) with the traditional decomposition approach to O(n), which will greatly relax the requirements and make large-scale quantum computation feasible. Moreover, we propose the potential application to the(n-k)-uniform hypergraph state.